Measuring complex refractive index through deep-learning-enabled optical reflectometry

被引:8
作者
Wang, Ziyang [1 ]
Lin, Yuxuan Cosmi [2 ,5 ]
Zhang, Kunyan [1 ,3 ]
Wu, Wenjing [1 ,4 ]
Huang, Shengxi [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[4] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[5] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
convolutional neural network; refractive index; ellipsometry; Kramers-Kronig relation; optical thin films;
D O I
10.1088/2053-1583/acc59b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical spectroscopy is indispensable for research and development in nanoscience and nanotechnology, microelectronics, energy, and advanced manufacturing. Advanced optical spectroscopy tools often require both specifically designed high-end instrumentation and intricate data analysis techniques. Beyond the common analytical tools, deep learning methods are well suited for interpreting high-dimensional and complicated spectroscopy data. They offer great opportunities to extract subtle and deep information about optical properties of materials with simpler optical setups, which would otherwise require sophisticated instrumentation. In this work, we propose a computational approach based on a conventional tabletop optical microscope and a deep learning model called ReflectoNet. Without any prior knowledge about the multilayer substrates, ReflectoNet can predict the complex refractive indices of thin films and 2D materials on top of these nontrivial substrates from experimentally measured optical reflectance spectra with high accuracies. This task was not feasible previously with traditional reflectometry or ellipsometry methods. Fundamental physical principles, such as the Kramers-Kronig relations, are spontaneously learned by the model without any further training. This approach enables in-operando optical characterization of functional materials and 2D materials within complex photonic structures or optoelectronic devices.
引用
收藏
页数:11
相关论文
共 39 条
  • [1] Agarap A. F., 2018, arXiv, DOI DOI 10.48550/ARXIV.1803.08375
  • [2] [Anonymous], 2005, KRAMERS KRONIG RELAT, DOI [10.1007/3-540-27316-6_6, DOI 10.1007/B138913]
  • [3] Arunachalam A, 2022, Arxiv, DOI arXiv:2201.04933
  • [4] Burkhard G. F., 2011, TRANSFER MATRIX OPTI
  • [5] Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications
    Chaneliere, C
    Autran, JL
    Devine, RAB
    Balland, B
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1998, 22 (06) : 269 - 322
  • [6] Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry
    Chang, You-Chia
    Liu, Chang-Hua
    Liu, Che-Hung
    Zhong, Zhaohui
    Norris, Theodore B.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (26)
  • [7] Fujiwara H., 2009, SPECTROSCOPIC ELLIPS
  • [8] Recent progress of the computational 2D materials database (C2DB)
    Gjerding, Morten Niklas
    Taghizadeh, Alireza
    Rasmussen, Asbjorn
    Ali, Sajid
    Bertoldo, Fabian
    Deilmann, Thorsten
    Knosgaard, Nikolaj Rorbaek
    Kruse, Mads
    Larsen, Ask Hjorth
    Manti, Simone
    Pedersen, Thomas Garm
    Petralanda, Urko
    Skovhus, Thorbjorn
    Svendsen, Mark Kamper
    Mortensen, Jens Jorgen
    Olsen, Thomas
    Thygesen, Kristian Sommer
    [J]. 2D MATERIALS, 2021, 8 (04)
  • [9] The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
    Haastrup, Sten
    Strange, Mikkel
    Pandey, Mohnish
    Deilmann, Thorsten
    Schmidt, Per S.
    Hinsche, Nicki F.
    Gjerding, Morten N.
    Torelli, Daniele
    Larsen, Peter M.
    Riis-Jensen, Anders C.
    Gath, Jakob
    Jacobsen, Karsten W.
    Mortensen, Jens Jorgen
    Olsen, Thomas
    Thygesen, Kristian S.
    [J]. 2D MATERIALS, 2018, 5 (04):
  • [10] Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)
    Hantanasirisakul, Kanit
    Gogotsi, Yury
    [J]. ADVANCED MATERIALS, 2018, 30 (52)