Cardiovascular and Renal Comorbidities Included into Neural Networks Predict the Outcome in COVID-19 Patients Admitted to an Intensive Care Unit: Three-Center, Cross-Validation, Age- and Sex-Matched Study

被引:2
作者
Ovcharenko, Evgeny [1 ]
Kutikhin, Anton [1 ]
Gruzdeva, Olga [1 ]
Kuzmina, Anastasia [1 ]
Slesareva, Tamara [1 ]
Brusina, Elena [2 ]
Kudasheva, Svetlana [2 ,3 ]
Bondarenko, Tatiana [2 ,3 ]
Kuzmenko, Svetlana [4 ]
Osyaev, Nikolay [4 ]
Ivannikova, Natalia [4 ]
Vavin, Grigory [4 ]
Moses, Vadim [4 ]
Danilov, Viacheslav [5 ]
Komossky, Egor [6 ]
Klyshnikov, Kirill [1 ]
机构
[1] Res Inst Complex Issues Cardiovasc Dis, Dept Expt Med, 6 Sosnovy Blvd, Kemerovo 650002, Russia
[2] Kemerovo State Med Univ, Dept Epidemiol, 22a Voroshilova St, Kemerovo 650056, Russia
[3] Kuzbass Reg Infect Dis Clin Hosp, 43b Volgogradskaya St, Kemerovo 650036, Russia
[4] Kuzbass Reg Clin Hosp, 22a Oktyabrskiy Prospekt, Kemerovo 650061, Russia
[5] Politecn Milan, 32 Piazza Leonardo Vinci, I-20133 Milan, Italy
[6] St Petersburg Electrotech Univ, Fac Comp Sci & Technol, 5 Prof Popova St, St Petersburg 197022, Russia
关键词
COVID-19; machine learning; neural networks; prognostication; coronary artery disease; chronic kidney disease; blood urea nitrogen; C-reactive protein; lymphocyte count; neutrophil-to-lymphocyte ratio; CLINICAL-DATA; FEATURES; MODEL; INFECTION; MORTALITY;
D O I
10.3390/jcdd10020039
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Here, we performed a multicenter, age- and sex-matched study to compare the efficiency of various machine learning algorithms in the prediction of COVID-19 fatal outcomes and to develop sensitive, specific, and robust artificial intelligence tools for the prompt triage of patients with severe COVID-19 in the intensive care unit setting. In a challenge against other established machine learning algorithms (decision trees, random forests, extra trees, neural networks, k-nearest neighbors, and gradient boosting: XGBoost, LightGBM, and CatBoost) and multivariate logistic regression as a reference, neural networks demonstrated the highest sensitivity, sufficient specificity, and excellent robustness. Further, neural networks based on coronary artery disease/chronic heart failure, stage 3-5 chronic kidney disease, blood urea nitrogen, and C-reactive protein as the predictors exceeded 90% sensitivity and 80% specificity, reaching AUROC of 0.866 at primary cross-validation and 0.849 at secondary cross-validation on virtual samples generated by the bootstrapping procedure. These results underscore the impact of cardiovascular and renal comorbidities in the context of thrombotic complications characteristic of severe COVID-19. As aforementioned predictors can be obtained from the case histories or are inexpensive to be measured at admission to the intensive care unit, we suggest this predictor composition is useful for the triage of critically ill COVID-19 patients.
引用
收藏
页数:19
相关论文
共 71 条
[1]   An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples [J].
Abayomi-Alli, Olusola O. ;
Damasevicius, Robertas ;
Maskeliunas, Rytis ;
Misra, Sanjay .
SENSORS, 2022, 22 (06)
[2]   Comparison of deep learning with regression analysis in creating predictive models for SARS-CoV-2 outcomes [J].
Abdulaal, Ahmed ;
Patel, Aatish ;
Charani, Esmita ;
Denny, Sarah ;
Alqahtani, Saleh A. ;
Davies, Gary W. ;
Mughal, Nabeela ;
Moore, Luke S. P. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[3]   Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation [J].
Abdulaal, Ahmed ;
Patel, Aatish ;
Charani, Esmita ;
Denny, Sarah ;
Mughal, Nabeela ;
Moore, Luke .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (08)
[4]   Predicting Risk of Mortality in COVID-19 Hospitalized Patients using Hybrid Machine Learning Algorithms [J].
Afrash M.R. ;
Shanbehzadeh M. ;
Kazemi-Arpanahi H. .
Journal of Biomedical Physics and Engineering, 2022, 12 (06) :611-626
[5]   Deep forest model for diagnosing COVID-19 from routine blood tests [J].
AlJame, Maryam ;
Imtiaz, Ayyub ;
Ahmad, Imtiaz ;
Mohammed, Ameer .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target [J].
Ambrosino, Pasquale ;
Calcaterra, Ilenia Lorenza ;
Mosella, Marco ;
Formisano, Roberto ;
D'Anna, Silvestro Ennio ;
Bachetti, Tiziana ;
Marcuccio, Giuseppina ;
Galloway, Brurya ;
Mancini, Francesco Paolo ;
Papa, Antimo ;
Motta, Andrea ;
Di Minno, Matteo Nicola Dario ;
Maniscalco, Mauro .
BIOMEDICINES, 2022, 10 (04)
[7]   Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study [J].
An, Chansik ;
Lim, Hyunsun ;
Kim, Dong-Wook ;
Chang, Jung Hyun ;
Choi, Yoon Jung ;
Kim, Seong Woo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Prognosing the risk of COVID-19 death through a machine learning-based routine blood panel: A retrospective study in Brazil [J].
Araujo, Daniella Castro ;
Veloso, Adriano Alonso ;
Borges, Karina Braga Gomes ;
Carvalho, Maria das Gracas .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 165
[9]   Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Dugan, Jennifer ;
Pereira, Naveen ;
Noseworthy, Peter A. ;
Jimenez, Francisco Lopez ;
Cruz, Jessica ;
Carter, Rickey E. ;
DeSimone, Daniel C. ;
Signorino, John ;
Halamka, John ;
Gari, Nikhita R. Chennaiah ;
Madathala, Raja Sekhar ;
Platonov, Pyotr G. ;
Gul, Fahad ;
Janssens, Stefan P. ;
Narayan, Sanjiv ;
Upadhyay, Gaurav A. ;
Alenghat, Francis J. ;
Lahiri, Marc K. ;
Dujardin, Karl ;
Hermel, Melody ;
Dominic, Paari ;
Turk-Adawi, Karam ;
Asaad, Nidal ;
Svensson, Anneli ;
Fernandez-Aviles, Francisco ;
Esakof, Darryl D. ;
Bartunek, Jozef ;
Noheria, Amit ;
Sridhar, Arun R. ;
Lanza, Gaetano A. ;
Cohoon, Kevin ;
Padmanabhan, Deepak ;
Gutierrez, Jose Alberto Pardo ;
Sinagra, Gianfranco ;
Merlo, Marco ;
Zagari, Domenico ;
Escenaro, Brenda D. Rodriguez ;
Pahlajani, Dev B. ;
Loncar, Goran ;
Vukomanovic, Vladan ;
Jensen, Henrik K. ;
Farkouh, Michael E. ;
Luescher, Thomas F. ;
Ping, Carolyn Lam Su ;
Peters, Nicholas S. ;
Friedman, Paul A. .
MAYO CLINIC PROCEEDINGS, 2021, 96 (08) :2081-2094
[10]   COVID-19 mortality risk assessment: An international multi-center study [J].
Bertsimas, Dimitris ;
Lukin, Galit ;
Mingardi, Luca ;
Nohadani, Omid ;
Orfanoudaki, Agni ;
Stellato, Bartolomeo ;
Wiberg, Holly ;
Gonzalez-Garcia, Sara ;
Parra-Calderon, Carlos Luis ;
Robinson, Kenneth ;
Schneider, Michelle ;
Stein, Barry ;
Estirado, Alberto ;
Beccara, Lia ;
Canino, Rosario ;
Dal Bello, Martina ;
Pezzetti, Federica ;
Pan, Angelo .
PLOS ONE, 2020, 15 (12)