On trace zero matrices and commutators

被引:0
作者
Suwama, Makoto [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Non-commutator; Trace; 0; matrix; ALGEBRA;
D O I
10.1016/j.jalgebra.2022.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given any commutative ring R, a commutator of two n x n matrices over R has trace 0. In this paper, we study the converse: whether every n x n trace 0 matrix is a commutator. We show that if R is a regular ring with large enough Krull dimension relative to n, then there exists a n x n trace 0 matrix that is not a commutator. This improves on a result of Lissner by increasing the size of the matrix allowed for a fixed R. We also give an example of a Noetherian dimension 1 commutative domain R that admits a n x n trace 0 non -commutator for any n >= 2.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 48
页数:23
相关论文
共 19 条
  • [1] Albert A.A., 1957, MICHIGAN MATH J, V4, P1
  • [2] COMPLETE DECOMPOSABILITY IN THE EXTERIOR ALGEBRA OF A FREE MODULE
    BORATYNSKI, M
    DAVIS, ED
    GERAMITA, AV
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (01): : 27 - 33
  • [3] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [4] A NEW TABLE OF CONSTANT WEIGHT CODES
    BROUWER, AE
    SHEARER, JB
    SLOANE, NJA
    SMITH, WD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1334 - 1380
  • [5] DAVIS ED, 1977, T AM MATH SOC, V231, P497
  • [6] Domains of dimension 1 with infinitely many singular maximal ideals
    Heinzer, William J.
    Levy, Lawrence S.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (01) : 203 - 214
  • [7] LAFFEY TJ, 1994, LINEAR ALGEBRA APPL, V198, P671
  • [8] Lang S., 2005, ALGEBRA
  • [9] Lissner D., 1961, T AM MATH SOC, V98, P285, DOI [/10.2307/1993498, DOI 10.2307/1993498]
  • [10] Matsumura H., 1989, COMMUTATIVE RING THE, V8