Automated quantification of PET/CT skeletal tumor burden in prostate cancer using artificial intelligence: The PET index

被引:10
作者
Belal, Sarah Lindgren [1 ,2 ,3 ]
Larsson, Mans [4 ]
Holm, Jorun [5 ]
Buch-Olsen, Karen Middelbo [5 ]
Soerensen, Jens [6 ]
Bjartell, Anders [7 ]
Edenbrandt, Lars [8 ]
Tragardh, Elin [1 ,3 ]
机构
[1] Lund Univ, Dept Translat Med, Div Nucl Med, Malmo, Sweden
[2] Skane Univ Hosp, Dept Surg, Malmo, Sweden
[3] Lund Univ, Wallenberg Ctr Mol Med, Malmo, Sweden
[4] Eigenvis AB, Malmo, Sweden
[5] Odense Univ Hosp, Dept Nucl Med, Odense, Denmark
[6] Uppsala Univ, Dept Surg Sci, Div Radiol, Uppsala, Sweden
[7] Lund Univ, Dept Translat Med, Div Urol Canc, Malmo, Sweden
[8] Univ Gothenburg, Inst Med, Dept Mol & Clin Med, Sahlgrenska Acad, Gothenburg, Sweden
关键词
PET-CT; Artificial intelligence; Deep learning; Tumor burden; Prostate cancer; WHOLE-BODY; F-18-NAF PET/CT; METASTASES;
D O I
10.1007/s00259-023-06108-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Consistent assessment of bone metastases is crucial for patient management and clinical trials in prostate cancer (PCa). We aimed to develop a fully automated convolutional neural network (CNN)-based model for calculating PET/CT skeletal tumor burden in patients with PCa. Methods A total of 168 patients from three centers were divided into training, validation, and test groups. Manual annotations of skeletal lesions in -[F-18]fluoride PET/CT scans were used to train a CNN. The AI model was evaluated in 26 patients and compared to segmentations by physicians and to a SUV 15 threshold. PET index representing the percentage of skeletal volume taken up by lesions was estimated. Results There was no case in which all readers agreed on prevalence of lesions that the AI model failed to detect. PET index by the AI model correlated moderately strong to physician PET index (mean r = 0.69). Threshold PET index correlated fairly with physician PET index (mean r = 0.49). The sensitivity for lesion detection was 65-76% for AI, 68-91% for physicians, and 44-51% for threshold depending on which physician was considered reference. Conclusion It was possible to develop an AI-based model for automated assessment of PET/CT skeletal tumor burden. The model's performance was superior to using a threshold and provides fully automated calculation of whole-body skeletal tumor burden. It could be further developed to apply to different radiotracers. Objective scan evaluation is a first step toward developing a PET/CT imaging biomarker for PCa skeletal metastases.
引用
收藏
页码:1510 / 1520
页数:11
相关论文
共 37 条
[1]   Phase 3 Assessment of the Automated Bone Scan Index as a Prognostic Imaging Biomarker of Overall Survival in Men With Metastatic Castration-Resistant Prostate Cancer A Secondary Analysis of a Randomized Clinical Trial [J].
Armstrong, Andrew J. ;
Anand, Aseem ;
Edenbrandt, Lars ;
Bondesson, Eva ;
Bjartell, Anders ;
Widmark, Anders ;
Sternberg, Cora N. ;
Pili, Roberto ;
Tuvesson, Helen ;
Nordle, Orjan ;
Carducci, Michael A. ;
Morris, Michael J. .
JAMA ONCOLOGY, 2018, 4 (07) :944-951
[2]   Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Enqvist, Olof ;
Ulen, Johannes ;
Poulsen, Mads H. ;
Simonsen, Jane ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 113 :89-95
[3]   3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Hasani, Nezar ;
Enqvist, Olof ;
Svarm, Linus ;
Kahl, Fredrik ;
Simonsen, Jane ;
Poulsen, Mads H. ;
Ohlsson, Mattias ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EJNMMI RESEARCH, 2017, 7
[4]   Exploring New Multimodal Quantitative Imaging Indices for the Assessment of Osseous Tumor Burden in Prostate Cancer Using 68Ga-PSMA PET/CT [J].
Bieth, Marie ;
Kroenke, Markus ;
Tauber, Robert ;
Dahlbender, Marielena ;
Retz, Margitta ;
Nekolla, Stephan G. ;
Menze, Bjoern ;
Maurer, Tobias ;
Eiber, Matthias ;
Schwaiger, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (10) :1632-1637
[5]   Evaluation of whole-body tumor burden with 68Ga-PSMA PET/CT in the biochemical recurrence of prostate cancer [J].
Brito, A. E. T. ;
Mourato, F. A. ;
de Oliveira, R. P. M. ;
Leal, A. L. G. ;
Filho, P. J. A. ;
de Filho, J. L. L. .
ANNALS OF NUCLEAR MEDICINE, 2019, 33 (05) :344-350
[6]   Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning [J].
Capobianco, Nicolo ;
Sibille, Ludovic ;
Chantadisai, Maythinee ;
Gafita, Andrei ;
Langbein, Thomas ;
Platsch, Guenther ;
Solari, Esteban Lucas ;
Shah, Vijay ;
Spottiswoode, Bruce ;
Eiber, Matthias ;
Weber, Wolfgang A. ;
Navab, Nassir ;
Nekolla, Stephan G. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) :517-526
[7]   E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET [J].
Ceci, Francesco ;
Oprea-Lager, Daniela E. ;
Emmett, Louise ;
Adam, Judit A. ;
Bomanji, Jamshed ;
Czernin, Johannes ;
Eiber, Matthias ;
Haberkorn, Uwe ;
Hofman, Michael S. ;
Hope, Thomas A. ;
Kumar, Rakesh ;
Rowe, Steven P. ;
Schwarzenboeck, Sarah M. ;
Fanti, Stefano ;
Herrmann, Ken .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1626-1638
[8]  
Chan Y H, 2003, Singapore Med J, V44, P614
[9]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[10]   Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT [J].
Eiber, Matthias ;
Herrmann, Ken ;
Calais, Jeremie ;
Hadaschik, Boris ;
Giesel, Frederik L. ;
Hartenbach, Markus ;
Hope, Thomas ;
Reiter, Robert ;
Maurer, Tobias ;
Weber, Wolfgang A. ;
Fendler, Wolfgang P. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (03) :469-478