Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN

被引:25
|
作者
Kinman, Laurel F. [1 ]
Powell, Barrett M. [1 ]
Zhong, Ellen D. [1 ,2 ,3 ,4 ,5 ]
Berger, Bonnie [2 ,3 ,4 ]
Davis, Joseph H. [1 ,2 ]
机构
[1] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
[5] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
BAYESIAN-APPROACH; REFINEMENT; RIBOSOME;
D O I
10.1038/s41596-022-00763-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-particle cryogenic electron microscopy (cryo-EM) has emerged as a powerful technique to visualize the structural landscape sampled by a protein complex. However, algorithmic and computational bottlenecks in analyzing heterogeneous cryo-EM datasets have prevented the full realization of this potential. CryoDRGN is a machine learning system for heterogeneous cryo-EM reconstruction of proteins and protein complexes from single-particle cryo-EM data. Central to this approach is a deep generative model for heterogeneous cryo-EM density maps, which we empirically find is effective in modeling both discrete and continuous forms of structural variability. Once trained, cryoDRGN is capable of generating an arbitrary number of 3D density maps, and thus interpreting the resulting ensemble is a challenge. Here, we showcase interactive and automated processing approaches for analyzing cryoDRGN results. Specifically, we detail a step-by-step protocol for the analysis of an existing assembling 50S ribosome dataset, including preparation of inputs, network training and visualization of the resulting ensemble of density maps. Additionally, we describe and implement methods to comprehensively analyze and interpret the distribution of volumes with the assistance of an associated atomic model. This protocol is appropriate for structural biologists familiar with processing single-particle cryo-EM datasets and with moderate experience navigating Python and Jupyter notebooks. It requires 3-4 days to complete. CryoDRGN is open source software that is freely available.
引用
收藏
页码:319 / +
页数:31
相关论文
共 50 条
  • [1] Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN
    Laurel F. Kinman
    Barrett M. Powell
    Ellen D. Zhong
    Bonnie Berger
    Joseph H. Davis
    Nature Protocols, 2023, 18 : 319 - 339
  • [2] Towards automating single-particle cryo-EM data acquisition
    Dienemann, Christian
    IUCRJ, 2023, 10 : 4 - 5
  • [3] Single-Particle Cryo-EM Data Collection with Stage Tilt using Leginon
    Aiyer, Sriram
    Strutzenberg, Timothy S.
    Bowman, Marianne E.
    Noel, Joseph P.
    Lyumkis, Dmitry
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (185):
  • [4] Single-particle cryo-EM analysis of the purinosome
    Calise, S. J.
    Molfino, J.
    Dickinson, M. S.
    Quispe, J.
    Kollman, J. M.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 675 - 676
  • [5] A potential difference for single-particle cryo-EM
    Rosenthal, Peter B.
    IUCRJ, 2019, 6 : 988 - 989
  • [6] Single-particle cryo-EM: beyond the resolution
    Jean-Paul Armache
    Yifan Cheng
    National Science Review, 2019, 6 (05) : 864 - 866
  • [7] Single-particle cryo-EM at atomic resolution
    Nakane, Takanori
    Kotecha, Abhay
    Sente, Andrija
    McMullan, Greg
    Masiulis, Simonas
    Brown, Patricia M. G. E.
    Grigoras, Ioana T.
    Malinauskaite, Lina
    Malinauskas, Tomas
    Miehling, Jonas
    Uchanski, Tomasz
    Yu, Lingbo
    Karia, Dimple
    Pechnikova, Evgeniya V.
    de Jong, Erwin
    Keizer, Jeroen
    Bischoff, Maarten
    McCormack, Jamie
    Tiemeijer, Peter
    Hardwick, Steven W.
    Chirgadze, Dimitri Y.
    Murshudov, Garib
    Aricescu, A. Radu
    Scheres, Sjors H. W.
    NATURE, 2020, 587 (7832) : 152 - +
  • [8] Single-particle cryo-EM at atomic resolution
    Sente, A.
    Nakane, T.
    Kotecha, A.
    Aricescu, A. R.
    Scheres, S. H. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2020, 76 : A220 - A220
  • [9] Single-Particle Cryo-EM at Crystallographic Resolution
    Cheng, Yifan
    CELL, 2015, 161 (03) : 450 - 457
  • [10] Single-particle cryo-EM at atomic resolution
    Takanori Nakane
    Abhay Kotecha
    Andrija Sente
    Greg McMullan
    Simonas Masiulis
    Patricia M. G. E. Brown
    Ioana T. Grigoras
    Lina Malinauskaite
    Tomas Malinauskas
    Jonas Miehling
    Tomasz Uchański
    Lingbo Yu
    Dimple Karia
    Evgeniya V. Pechnikova
    Erwin de Jong
    Jeroen Keizer
    Maarten Bischoff
    Jamie McCormack
    Peter Tiemeijer
    Steven W. Hardwick
    Dimitri Y. Chirgadze
    Garib Murshudov
    A. Radu Aricescu
    Sjors H. W. Scheres
    Nature, 2020, 587 : 152 - 156