Applications of artificial intelligence in biliary tract cancers

被引:5
作者
Gupta, Pankaj [1 ]
Basu, Soumen [2 ]
Arora, Chetan [2 ]
机构
[1] Postgrad Inst Med Educ & Res, Dept Radiodiag & Imaging, Chandigarh 160012, India
[2] Indian Inst Technol Delhi, Dept Comp Sci & Engn, New Delhi 110016, India
关键词
Artificial intelligence; Bile duct; Biliary tract cancer; Cancer; Deep learning; Endoscopy; Gallbladder; Gallbladder cancer; Imaging; Machine learning; CHOLANGIOCARCINOMA; DIAGNOSIS; STRICTURES; MODEL;
D O I
10.1007/s12664-024-01518-0
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Biliary tract cancers are malignant neoplasms arising from bile duct epithelial cells. They include cholangiocarcinomas and gallbladder cancer. Gallbladder cancer has a marked geographical preference and is one of the most common cancers in women in northern India. Biliary tract cancers are usually diagnosed at an advanced, unresectable stage. Hence, the prognosis is extremely dismal. The five-year survival rate in advanced gallbladder cancer is < 5%. Hence, early detection and radical surgery are critical to improving biliary tract cancer prognoses. Radiological imaging plays an essential role in diagnosing and managing biliary tract cancers. However, the diagnosis is challenging because the biliary tract is affected by many diseases that may have radiological appearances similar to cancer. Artificial intelligence (AI) can improve radiologists' performance in various tasks. Deep learning (DL)-based approaches are increasingly incorporated into medical imaging to improve diagnostic performance. This paper reviews the AI-based strategies in biliary tract cancers to improve the diagnosis and prognosis.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 63 条
[1]   Deep Learning Demonstrates Potential for Lung Cancer Detection in Chest Radiography [J].
Armato, Samuel G., III .
RADIOLOGY, 2020, 297 (03) :697-698
[2]   Cholangiocarcinoma 2020: the next horizon in mechanisms and management [J].
Banales, Jesus M. ;
Marin, Jose J. G. ;
Lamarca, Angela ;
Rodrigues, Pedro M. ;
Khan, Shahid A. ;
Roberts, Lewis R. ;
Cardinale, Vincenzo ;
Carpino, Guido ;
Andersen, Jesper B. ;
Braconi, Chiara ;
Calvisi, Diego F. ;
Perugorria, Maria J. ;
Fabris, Luca ;
Boulter, Luke ;
Macias, Rocio I. R. ;
Gaudio, Eugenio ;
Alvaro, Domenico ;
Gradilone, Sergio A. ;
Strazzabosco, Mario ;
Marzioni, Marco ;
Coulouarn, Cedric ;
Fouassier, Laura ;
Raggi, Chiara ;
Invernizzi, Pietro ;
Mertens, Joachim C. ;
Moncsek, Anja ;
Rizvi, Sumera ;
Heimbach, Julie ;
Koerkamp, Bas Groot ;
Bruix, Jordi ;
Forner, Alejandro ;
Bridgewater, John ;
Valle, Juan W. ;
Gores, Gregory J. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (09) :557-588
[3]  
Basu S., 2022, P IEEECVF C COMPUTER, P20886, DOI DOI 10.48550/ARXIV.2204.11433
[4]   RadFormer: Transformers with global-local attention for interpretable and accurate Gallbladder Cancer detection [J].
Basu, Soumen ;
Gupta, Mayank ;
Rana, Pratyaksha ;
Gupta, Pankaj ;
Arora, Chetan .
MEDICAL IMAGE ANALYSIS, 2023, 83
[5]   Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: A multicentre cohort study [J].
Bo, Zhiyuan ;
Chen, Bo ;
Yang, Yi ;
Yao, Fei ;
Mao, Yicheng ;
Yao, Jiangqiao ;
Yang, Jinhuan ;
He, Qikuan ;
Zhao, Zhengxiao ;
Shi, Xintong ;
Chen, Jicai ;
Yu, Zhengping ;
Yang, Yunjun ;
Wang, Yi ;
Chen, Gang .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (08) :2501-2513
[6]   Lightweight neural network for smart diagnosis of cholangiocarcinoma using histopathological images [J].
Chakrabarti, Shubhadip ;
Rao, Ummity Srinivasa .
SCIENTIFIC REPORTS, 2023, 13 (01)
[7]   Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: A multi-institutional study [J].
Chen, Bo ;
Mao, Yicheng ;
Li, Jiacheng ;
Zhao, Zhengxiao ;
Chen, Qiwen ;
Yu, Yaoyao ;
Yang, Yunjun ;
Dong, Yulong ;
Lin, Ganglian ;
Yao, Jiangqiao ;
Lu, Mengmeng ;
Wu, Lijun ;
Bo, Zhiyuan ;
Chen, Gang ;
Xie, Xiaozai .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
[8]   Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma [J].
Chen, Jianan ;
Zhang, Weibin ;
Bao, Jingwen ;
Wang, Kun ;
Zhao, Qiannan ;
Zhu, Yuli ;
Chen, Yanling .
ABDOMINAL RADIOLOGY, 2024, 49 (01) :93-102
[9]   Differential diagnoses of gallbladder tumors using CT-based deep learning [J].
Fujita, Hiroaki ;
Wakiya, Taiichi ;
Ishido, Keinosuke ;
Kimura, Norihisa ;
Nagase, Hayato ;
Kanda, Taishu ;
Matsuzaka, Masashi ;
Sasaki, Yoshihiro ;
Hakamada, Kenichi .
ANNALS OF GASTROENTEROLOGICAL SURGERY, 2022, 6 (06) :823-832
[10]   A Multiparametric Fusion Deep Learning Model Based on DCE-MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma [J].
Gao, Wenyu ;
Wang, Wentao ;
Song, Danjun ;
Wang, Kang ;
Lian, Danlan ;
Yang, Chun ;
Zhu, Kai ;
Zheng, Jiaping ;
Zeng, Mengsu ;
Rao, Sheng-xiang ;
Wang, Manning .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (04) :1029-1039