Probability Representation of Nonclassical States of the Inverted Oscillator

被引:4
作者
Mechler, Matyas [1 ,2 ]
Man'ko, Margarita A. [3 ]
Man'ko, Vladimir I. [3 ]
Adam, Peter [1 ,2 ]
机构
[1] HUN REN Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Univ Pecs, Inst Phys, Ifjusag Utja 6, H-7624 Pecs, Hungary
[3] Russian Acad Sci, Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
关键词
nonclassical states; inverted oscillator; probability representation; symplectic tomogram; QUASI-PROBABILITY; COHERENT STATES; QUANTUM; DISTRIBUTIONS; TOMOGRAPHY; SYSTEMS;
D O I
10.1007/s10946-024-10182-w
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We determine the evolving probability representations of several important nonclassical states of the inverted oscillator by applying the method of integrals of motion for this system. The considered nonclassical states initially prepared in the potential of the harmonic oscillator are even and odd Schrodinger cat states, squeezed coherent states, and lattice superpositions of coherent states. The latter superpositions can approximate several nonclassical states with high precision, hence their probability representation can describe various nonclassical states of the inverted oscillators. Explicit results are shown for the approximation of number states, photon number superpositions, and amplitude squeezed states by determining the parameters of the superposition appearing in the probability
引用
收藏
页码:1 / 13
页数:13
相关论文
共 42 条
[1]   Construction of quantum states by special superpositions of coherent states [J].
Adam, P. ;
Molnar, E. ;
Mogyorosi, G. ;
Varga, A. ;
Mechler, M. ;
Janszky, J. .
PHYSICA SCRIPTA, 2015, 90 (07)
[2]   Even and Odd Schro Dinger Cat States in the Probability Representation of Quantum Mechanics [J].
Adam, Peter ;
Man'ko, Margarita A. ;
Man'ko, Vladimir, I .
JOURNAL OF RUSSIAN LASER RESEARCH, 2022, 43 (01) :1-17
[3]   Properties of Quantizer and Dequantizer Operators for Qudit States and Parametric Down-Conversion [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Mechler, Matyas .
SYMMETRY-BASEL, 2021, 13 (01) :1-17
[4]   Star-Product Formalism for the Probability and Mean-Value Representations of Qudits [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Mechler, Matyas .
JOURNAL OF RUSSIAN LASER RESEARCH, 2020, 41 (05) :470-483
[5]   SU(2) Symmetry of Qubit States and Heisenberg-Weyl Symmetry of Systems with Continuous Variables in the Probability Representation of Quantum Mechanics [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir, I ;
Mechler, Matyas .
SYMMETRY-BASEL, 2020, 12 (07)
[6]   Nonnegative Discrete Symbols and Their Probabilistic Interpretation [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2017, 38 (06) :491-506
[7]   WIGNER FUNCTIONS AND SPIN TOMOGRAMS FOR QUBIT STATES [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Ghiu, Iulia ;
Isar, Aurelian ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2014, 35 (01) :3-13
[8]   Description and measurement of observables in the optical tomographic probability representation of quantum mechanics [J].
Amosov, G. G. ;
Korennoy, Ya A. ;
Man'ko, V. I. .
PHYSICAL REVIEW A, 2012, 85 (05)
[9]   Quantum Tomography twenty years later [J].
Asorey, M. ;
Ibort, A. ;
Marmo, G. ;
Ventriglia, F. .
PHYSICA SCRIPTA, 2015, 90 (07)
[10]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405