ANALYTICAL AND ASYMPTOTIC REPRESENTATIONS FOR TWO SEQUENCE RELATED TO GAUSS' LEMNISCATE FUNCTIONS

被引:1
作者
Han, Xue-Feng [1 ]
Chen, Chao-Ping [1 ]
Srivastava, H. M. [2 ,3 ,4 ,5 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, Baku AZ-1007, Azerbaijan
[5] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
关键词
Gamma and Beta functions; Lemniscate functions; Asymptotic expansions; Zeta functions; Bell polynomials;
D O I
10.2298/AADM220810024H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the sequences G(n) and g(n) be defined by G(n) := integral(1 )(0)dt/(1 - t(2n))(1/n) (n >= 2) and g(n) := integral(infinity )(0)dt/(1 + t(2n))(1/n) (n >= 1). In this paper, we first derive analytical representations for these two sequences G(n) and g(n) in terms of the gamma function. By using the obtained analytical representations, we then deduce asymptotic expansions for G(n) and g(n).
引用
收藏
页码:525 / 537
页数:13
相关论文
共 21 条
  • [1] [Anonymous], 1987, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
  • [2] AYOUB R, 1984, ARCH HIST EXACT SCI, V29, P131
  • [3] RAMANUJAN INVERSION FORMULAS FOR THE LEMNISCATE AND ALLIED FUNCTIONS
    BERNDT, BC
    BHARGAVA, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (02) : 504 - 524
  • [4] Efficient computation of lhara coefficients using the Bell polynomial recursion
    Bulo, Samuel Rota
    Hancock, Edwin R.
    Aziz, Furqan
    Pelillo, Marcello
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1436 - 1441
  • [5] ALGORITHMS INVOLVING ARITHMETIC AND GEOMETRIC MEANS
    CARLSON, BC
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (05) : 496 - &
  • [6] Charalambides C.A., 2002, CRC DISCR MATH APPL
  • [7] Comtet L., 1974, ADV COMBINATORICS
  • [8] New identities for the partial Bell polynomials
    Cvijovic, Djurdje
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1544 - 1547
  • [9] FARNELL A. B., 1960, Amer. Math. Monthly, V67, P300
  • [10] KLAMKIN M. S., 1959, Amer. Math. Monthly, V66, P427