Nanoscale fluctuation of stacking fault energy strengthens multi-principal element alloys

被引:4
|
作者
Pei, Zongrui [1 ,2 ]
Eisenbach, Markus [2 ]
Liaw, Peter K.
Chen, Mingwei [3 ,4 ,5 ]
机构
[1] NYU, New York, NY 10012 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Engn & Hopkins Extreme Mat Inst, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Nanoscale energy fluctuation; Staking fault energy; Chemical short-range order; Multi-principal element alloy; Mechanism; SHORT-RANGE ORDER; MECHANICAL-PROPERTIES; AB-INITIO; ENTROPY; IMPACT; SLIP;
D O I
10.1016/j.jmst.2023.01.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chemical randomness and the associated energy fluctuation are essential features of multi-principal element alloys (MPEAs). Due to these features, nanoscale stacking fault energy (SFE) fluctuation is a natural and independent contribution to strengthening MPEAs. However, existing models for conventional alloys (i.e., alloys with one principal element) cannot be applied to MPEAs. The extreme values of SFEs required by such models are unknown for MPEAs, which need to calculate the nanoscale volume relevant to the SFE fluctuation. In the present work, we developed an analytic model to evaluate the strengthening effect through the SFE fluctuation, profuse in MPEAs. The model has no adjustable parameters, and all parameters can be determined from experiments and ab initio calculations. This model explains available experimental observations and provides insightful guidance for designing new MPEAs based on the SFE fluctuation. It generally applies to MPEAs in random states and with chemical short-range order. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 50 条
  • [31] Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review
    Li, Xinfeng
    Yin, Jing
    Zhang, Jin
    Wang, Yanfei
    Song, Xiaolong
    Zhang, Yong
    Ren, Xuechong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 : 20 - 32
  • [32] A computational approach for mapping electrochemical activity of multi-principal element alloys
    Yuwono, Jodie A.
    Li, Xinyu
    Dolezal, Tyler D.
    Samin, Adib J.
    Shi, Javen Qinfeng
    Li, Zhipeng
    Birbilis, Nick
    NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [33] Effects of Iron on Microstructure and Properties of CoCrFexNi Multi-principal Element Alloys
    Han, Linge
    Jiang, Hui
    Qiao, Dongxu
    Lu, Yiping
    Wang, Tongmin
    ADVANCED FUNCTIONAL MATERIALS (CMC 2017), 2018, : 253 - 258
  • [34] Recent advances in computational design of structural multi-principal element alloys
    Anand, Abu
    Liu, Szu-Jia
    Singh, Chandra Veer
    ISCIENCE, 2023, 26 (10)
  • [35] pyMPEALab Toolkit for Accelerating Phase Design in Multi-principal Element Alloys
    Upadesh Subedi
    Anil Kunwar
    Yuri Amorim Coutinho
    Khem Gyanwali
    Metals and Materials International, 2022, 28 : 269 - 281
  • [36] Hexagonal (CoCrCuTi)100-xFex multi-principal element alloys
    Derimow, N.
    Jaime, R. F.
    Le, B.
    Abbaschian, R.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 261
  • [37] A survey of energies from pure metals to multi-principal element alloys
    Chen, Ruitian
    Li, Evelyn
    Zou, Yu
    JOURNAL OF MATERIALS INFORMATICS, 2024, 4 (04):
  • [38] Ubiquitous short-range order in multi-principal element alloys
    Han, Ying
    Chen, Hangman
    Sun, Yongwen
    Liu, Jian
    Wei, Shaolou
    Xie, Bijun
    Zhang, Zhiyu
    Zhu, Yingxin
    Li, Meng
    Yang, Judith
    Chen, Wen
    Cao, Penghui
    Yang, Yang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [39] Vacancy formation energies and migration barriers in multi-principal element alloys
    Roy, Ankit
    Singh, Prashant
    Balasubramanian, Ganesh
    Johnson, Duane D.
    ACTA MATERIALIA, 2022, 226
  • [40] Accelerated exploration of multi-principal element alloys with solid solution phases
    O.N. Senkov
    J.D. Miller
    D.B. Miracle
    C. Woodward
    Nature Communications, 6