Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations

被引:3
作者
Mandal, Moumita [1 ]
Kayal, Arnab [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
[2] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Integro-differential equations; Smooth kernels; Projection method; Kulkarni method; Superconvergence rates; NUMERICAL-SOLUTION; GALERKIN-METHOD; COLLOCATION METHODS; INTEGRAL-EQUATIONS; SUPERCONVERGENCE;
D O I
10.1016/j.apnum.2022.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to findthe approximate solution of the nonlinear Fredholm integro-differential equations of second kind with smooth kernels with less computational complexity and investigate the asymptotic behavior of convergence of the approximate solutions by using global polynomials based projection methods. We develop the theoretical framework for the nonlinear Fredholm integro-differential equations to obtain the superconvergence results by Legendre polynomial based projection methods and their iterated versions. Numerical examples are considered to demonstrate the theoretical results. (c) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 76
页数:28
相关论文
共 30 条
[1]   PROJECTION AND ITERATED PROJECTION METHODS FOR NONLINEAR INTEGRAL-EQUATIONS [J].
ATKINSON, KE ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1352-1373
[2]   A sequential approach for solving the Fredholm integro-differential equation [J].
Berenguer, M. I. ;
Fernandez Munoz, M. V. ;
Garralda-Guillem, A. I. ;
Ruiz Galan, M. .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :297-304
[3]   ITERATED COLLOCATION METHODS AND THEIR DISCRETIZATIONS FOR VOLTERRA INTEGRAL-EQUATIONS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1132-1145
[4]  
Chen Z., 2007, J INTEGRAL EQU APPL, V19, P143
[5]  
Daliri Birjandi M. H., 2018, Journal of Applied Mathematics, V2018, DOI 10.1155/2018/7461058
[6]   A method for the numerical solution of the integro-differential equations [J].
Darania, P. ;
Ebadian, Ali .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :657-668
[7]   Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations [J].
Das, Payel ;
Sahani, Mitali Madhumita ;
Nelakanti, Gnaneshwar ;
Long, Guangqing .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) :213-230
[8]   A comparison of Adomian's decomposition method and wavelet-Galerkin method for solving integro-differential equations [J].
El-Sayed, SM ;
Abdel-Aziz, MR .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (01) :151-159
[9]   Mathematical programming methods in the numerical solution of Volterra integral and integro-differential equations with weakly-singular kernel [J].
Galperin, EA ;
Kansa, EJ ;
Makroglou, A ;
Nelson, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) :1505-1513
[10]   COMPACTNESS OF CERTAIN INTEGRAL-OPERATORS [J].
GRAHAM, IG ;
SLOAN, IH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (02) :580-594