Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:6
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
[41]   The application of artificial intelligence to chest medical image analysis [J].
Liu, Feng ;
Tang, Jie ;
Ma, Jiechao ;
Wang, Cheng ;
Ha, Qing ;
Yu, Yizhou ;
Zhou, Zhen .
INTELLIGENT MEDICINE, 2021, 1 (03) :104-117
[42]   Artificial Intelligence - Source of Inspiration or a Problem? [J].
Chita, Elena-Iulia ;
Dumitrescu-Popa, Silvia ;
Motorga, Bianca ;
Panait, Mihnea .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE, 2023, 17 (01) :895-903
[43]   The Other Artificial Intelligence Hardware Problem [J].
VerWey, John .
COMPUTER, 2022, 55 (01) :34-42
[44]   The problem of machine ethics in artificial intelligence [J].
Rajakishore Nath ;
Vineet Sahu .
AI & SOCIETY, 2020, 35 :103-111
[45]   The fundamental problem of an artificial intelligence realization [J].
Masnikosa, VP .
KYBERNETES, 1998, 27 (01) :71-+
[46]   The Frame Problem in Artificial Intelligence and Philosophy [J].
Gryz, Jarek .
FILOZOFIA NAUKI, 2013, 21 (02) :15-+
[47]   The problem of machine ethics in artificial intelligence [J].
Nath, Rajakishore ;
Sahu, Vineet .
AI & SOCIETY, 2020, 35 (01) :103-111
[48]   Artificial intelligence and the problem of siguilarity in economics [J].
Kapeliushnikov, Rostislav I. .
VOPROSY EKONOMIKI, 2025, (05) :5-45
[49]   Artificial intelligence: a solution for the lack of pathologists? [J].
Jurmeister, Philipp ;
Mueller, Klaus-Robert ;
Klauschen, Frederick .
PATHOLOGIE, 2022, 43 (03) :218-221
[50]   Team challenges: Is artificial intelligence the solution? [J].
Webber, Sheila Simsarian ;
Detjen, Jodi ;
MacLean, Tammy L. ;
Thomas, Dominic .
BUSINESS HORIZONS, 2019, 62 (06) :741-750