Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:2
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Successful Implementation of an Artificial Intelligence-Based Computer-Aided Detection System for Chest Radiography in Daily Clinical Practice
    Lee, Seungsoo
    Shin, Hyun Joo
    Kim, Sungwon
    Kim, Eun-Kyung
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2022, 23 (09) : 847 - 852
  • [32] Impact of artificial intelligence on clinical radiography practice: Futuristic prospects in a low resource setting
    Wuni, A-R
    Botwe, B. O.
    Akudjedu, T. N.
    [J]. RADIOGRAPHY, 2021, 27 (S1) : S69 - S73
  • [33] Chest radiography
    Ravin, CE
    Chotas, HG
    [J]. RADIOLOGY, 1997, 204 (03) : 593 - 600
  • [34] Artificial Intelligence Solution for Chest Radiographs in Respiratory Outpatient Clinics Multicenter Prospective Randomized Clinical Trial
    Lee, Hyun Woo
    Jin, Kwang Nam
    Oh, Sohee
    Kang, Sung-Yoon
    Lee, Sang Min
    Jeong, In Beom
    Son, Ji Woong
    Han, Ju Hyuck
    Heo, Eun Young
    Lee, Jung Gyu
    Kim, Young Jae
    Kim, Eun Young
    Cho, Young Jun
    [J]. ANNALS OF THE AMERICAN THORACIC SOCIETY, 2023, 20 (05) : 660 - 667
  • [35] Integration and evaluation of chest X-ray artificial intelligence in clinical practice
    Wong, Koon-Pong
    Homer, Suzanne Y.
    Wei, Sindy H.
    Yaghmai, Nazanin
    Paz, Oscar A. Estrada
    Young, Timothy J.
    Buhr, Russell G.
    Barjaktarevic, Igor
    Shrestha, Liza
    Daly, Morgan
    Goldin, Jonathan
    Enzmann, Dieter R.
    Brown, Matthew S.
    [J]. JOURNAL OF MEDICAL IMAGING, 2023, 10 (05)
  • [36] Chest X-ray Foreign Objects Detection Using Artificial Intelligence
    Kufel, Jakub
    Bargiel-Laczek, Katarzyna
    Kozlik, Maciej
    Czogalik, Lukasz
    Dudek, Piotr
    Magiera, Mikolaj
    Bartnikowska, Wiktoria
    Lis, Anna
    Paszkiewicz, Iga
    Kocot, Szymon
    Cebula, Maciej
    Gruszczynska, Katarzyna
    Nawrat, Zbigniew
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (18)
  • [37] Artificial intelligence system for identification of false-negative interpretations in chest radiographs
    Eui Jin Hwang
    Jongsoo Park
    Wonju Hong
    Hyun-Ju Lee
    Hyewon Choi
    Hyungjin Kim
    Ju Gang Nam
    Jin Mo Goo
    Soon Ho Yoon
    Chang Hyun Lee
    Chang Min Park
    [J]. European Radiology, 2022, 32 : 4468 - 4478
  • [38] Clinical Artificial Intelligence Applications in Radiology: Chest and Abdomen
    Lee, Sungwon
    Summers, Ronald M.
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (06) : 987 - 1002
  • [39] The application of artificial intelligence to chest medical image analysis
    Liu, Feng
    Tang, Jie
    Ma, Jiechao
    Wang, Cheng
    Ha, Qing
    Yu, Yizhou
    Zhou, Zhen
    [J]. INTELLIGENT MEDICINE, 2021, 1 (03): : 104 - 117
  • [40] Artificial Intelligence - Source of Inspiration or a Problem?
    Chita, Elena-Iulia
    Dumitrescu-Popa, Silvia
    Motorga, Bianca
    Panait, Mihnea
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE, 2023, 17 (01): : 895 - 903