Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:6
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Diagnostic Performance of Artificial Intelligence in Chest Radiographs Referred from the Emergency Department [J].
Alcolea, Julia Lopez ;
Alfonso, Ana Fernandez ;
Alonso, Raquel Cano ;
Vazquez, Ana Alvarez ;
Moreno, Alejandro Diaz ;
Castellanos, David Garcia ;
Greciano, Lucia Sanabria ;
Hayoun, Chawar ;
Rodriguez, Manuel Recio ;
Vazquez, Cristina Andreu ;
Vasallo, Israel John Thuissard ;
de Vega, Vicente Martinez .
DIAGNOSTICS, 2024, 14 (22)
[22]   Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography [J].
Ozkaya, Emre ;
Topal, Fatih Esad ;
Bulut, Tugrul ;
Gursoy, Merve ;
Ozuysal, Mustafa ;
Karakaya, Zeynep .
EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2022, 48 (01) :585-592
[23]   Radiologist-Trained AI Model for Identifying Suboptimal Chest- Radiographs [J].
Dasegowda, Giridhar ;
Bizzo, Bernardo C. ;
V. Gupta, Reya ;
Kaviani, Parisa ;
Ebrahimian, Shadi ;
Ricciardelli, Debra ;
Abedi-Tari, Faezeh ;
Neumark, Nir ;
Digumarthy, Subba R. ;
Kalra, Mannudeep K. ;
Dreyer, Keith J. .
ACADEMIC RADIOLOGY, 2023, 30 (12) :2921-2930
[24]   Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography [J].
Emre Ozkaya ;
Fatih Esad Topal ;
Tugrul Bulut ;
Merve Gursoy ;
Mustafa Ozuysal ;
Zeynep Karakaya .
European Journal of Trauma and Emergency Surgery, 2022, 48 :585-592
[25]   Application of artificial intelligence in chest imaging for COVID-19 [J].
Kim, Eun Young ;
Chung, Myung Jin .
JOURNAL OF THE KOREAN MEDICAL ASSOCIATION, 2021, 64 (10) :664-670
[26]   Explainable artificial intelligence, a perspective to the automatic classification of COVID-19 through chest X-rays problem [J].
Lopez Cabrera, Jose Daniel ;
Perez Diaz, Marlen .
MEDISUR-REVISTA DE CIENCIAS MEDICAS DE CIENFUEGOS, 2022, 20 (02) :341-351
[27]   Phantom evaluation of feasibility and applicability of artificial intelligence based pulmonary nodule detection in chest radiographs [J].
El-Gedaily, Mona ;
Euler, Andre ;
Guldimann, Mike ;
Schulz, Bastian ;
Zangeneh, Foroud Aghapour ;
Prause, Andreas ;
Kubik-Huch, Rahel A. ;
Niemann, Tilo .
MEDICINE, 2024, 103 (47) :e40485
[28]   The impact of artificial intelligence on radiography as a profession: A narrative review [J].
Al-Naser, Yousif Ahmed .
JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2023, 54 (01) :162-166
[29]   Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review [J].
Chen, Kenneth ;
Stotter, Christoph ;
Klestil, Thomas ;
Nehrer, Stefan .
DIAGNOSTICS, 2022, 12 (09)
[30]   Artificial Intelligence as a Culturological Problem [J].
Zaitsev, P. L. .
FACETS OF CULTURE IN THE AGE OF SOCIAL TRANSITION PROCEEDINGS OF THE ALL-RUSSIAN RESEARCH CONFERENCE, 2018, :148-152