Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:2
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography
    Emre Ozkaya
    Fatih Esad Topal
    Tugrul Bulut
    Merve Gursoy
    Mustafa Ozuysal
    Zeynep Karakaya
    European Journal of Trauma and Emergency Surgery, 2022, 48 : 585 - 592
  • [22] Radiologist-Trained AI Model for Identifying Suboptimal Chest- Radiographs
    Dasegowda, Giridhar
    Bizzo, Bernardo C.
    V. Gupta, Reya
    Kaviani, Parisa
    Ebrahimian, Shadi
    Ricciardelli, Debra
    Abedi-Tari, Faezeh
    Neumark, Nir
    Digumarthy, Subba R.
    Kalra, Mannudeep K.
    Dreyer, Keith J.
    ACADEMIC RADIOLOGY, 2023, 30 (12) : 2921 - 2930
  • [23] Application of artificial intelligence in chest imaging for COVID-19
    Kim, Eun Young
    Chung, Myung Jin
    JOURNAL OF THE KOREAN MEDICAL ASSOCIATION, 2021, 64 (10): : 664 - 670
  • [24] Explainable artificial intelligence, a perspective to the automatic classification of COVID-19 through chest X-rays problem
    Lopez Cabrera, Jose Daniel
    Perez Diaz, Marlen
    MEDISUR-REVISTA DE CIENCIAS MEDICAS DE CIENFUEGOS, 2022, 20 (02): : 341 - 351
  • [25] Phantom evaluation of feasibility and applicability of artificial intelligence based pulmonary nodule detection in chest radiographs
    El-Gedaily, Mona
    Euler, Andre
    Guldimann, Mike
    Schulz, Bastian
    Zangeneh, Foroud Aghapour
    Prause, Andreas
    Kubik-Huch, Rahel A.
    Niemann, Tilo
    MEDICINE, 2024, 103 (47) : e40485
  • [26] The impact of artificial intelligence on radiography as a profession: A narrative review
    Al-Naser, Yousif Ahmed
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2023, 54 (01) : 162 - 166
  • [27] Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review
    Chen, Kenneth
    Stotter, Christoph
    Klestil, Thomas
    Nehrer, Stefan
    DIAGNOSTICS, 2022, 12 (09)
  • [28] Artificial Intelligence as a Culturological Problem
    Zaitsev, P. L.
    FACETS OF CULTURE IN THE AGE OF SOCIAL TRANSITION PROCEEDINGS OF THE ALL-RUSSIAN RESEARCH CONFERENCE, 2018, : 148 - 152
  • [29] Artificial Intelligence and the Problem of Judgment
    Pamuk, Zeynep
    ETHICS & INTERNATIONAL AFFAIRS, 2023, 37 (02) : 232 - 243
  • [30] Effectiveness of artificial intelligence for detecting operable lung cancer on chest radiographs
    Shin, Hyun Joo
    Kwak, Se Hyun
    Kim, Kyeong Yeon
    Kim, Na Young
    Nam, Kyungsun
    Kim, Young Jin
    Kim, Eun-Kyung
    Suh, Young Joo
    Lee, Eun Hye
    TRANSLATIONAL LUNG CANCER RESEARCH, 2024, 13 (12) : 3473 - 3485