Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:2
|
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Computer-aided detection in chest radiography based on artificial intelligence: a survey
    Qin, Chunli
    Yao, Demin
    Shi, Yonghong
    Song, Zhijian
    BIOMEDICAL ENGINEERING ONLINE, 2018, 17
  • [2] Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study
    Kwang Nam Jin
    Eun Young Kim
    Young Jae Kim
    Gi Pyo Lee
    Hyungjin Kim
    Sohee Oh
    Yong Suk Kim
    Ju Hyuck Han
    Young Jun Cho
    European Radiology, 2022, 32 : 3469 - 3479
  • [3] Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study
    Jin, Kwang Nam
    Kim, Eun Young
    Kim, Young Jae
    Lee, Gi Pyo
    Kim, Hyungjin
    Oh, Sohee
    Kim, Yong Suk
    Han, Ju Hyuck
    Cho, Young Jun
    EUROPEAN RADIOLOGY, 2022, 32 (05) : 3469 - 3479
  • [4] Methodological evaluation of systematic reviews based on the use of artificial intelligence systems in chest radiography
    Vidal-Mondejar, J.
    Tejedor-Romero, L.
    Catala-Lopez, F.
    RADIOLOGIA, 2024, 66 (04): : 326 - 339
  • [5] Does Artificial Intelligence Dream of Elevated Natriuretic Peptide in Chest Radiography?
    Kagawa, Eisuke
    Kato, Masaya
    Oda, Noboru
    Kunita, Eiji
    Nagai, Michiaki
    Yamane, Aya
    Matsui, Shogo
    Yoshitomi, Yuki
    Ishida, Shunsuke
    Kurimoto, Genki
    Dote, Keigo
    CIRCULATION, 2023, 148
  • [6] Computer-aided detection in chest radiography based on artificial intelligence: a survey
    Chunli Qin
    Demin Yao
    Yonghong Shi
    Zhijian Song
    BioMedical Engineering OnLine, 17
  • [7] Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening
    Cao Xue-Fang
    Li Yuan
    Xin He-Nan
    Zhang Hao-Ran
    Pai Madhukar
    Gao Lei
    慢性疾病与转化医学(英文), 2021, 07 (01) : 35 - 40
  • [8] Artificial Intelligence-Based Prediction of Cardiovascular Diseases from Chest Radiography
    Farina, Juan M.
    Pereyra, Milagros
    Mahmoud, Ahmed K.
    Scalia, Isabel G.
    Abbas, Mohammed Tiseer
    Chao, Chieh-Ju
    Barry, Timothy
    Ayoub, Chadi
    Banerjee, Imon
    Arsanjani, Reza
    JOURNAL OF IMAGING, 2023, 9 (11)
  • [9] Artificial Intelligence Combined With Chest Radiography: New Hope for the Opportunistic Screening for Osteoporosis
    Ye, Hongnan
    KOREAN JOURNAL OF RADIOLOGY, 2025, 26 (04) : 390 - 391
  • [10] AIDCOV: An Interpretable Artificial Intelligence Model for Detection of COVID-19 from Chest Radiography Images
    Zokaeinikoo, Maryam
    Kazemian, Pooyan
    Mitra, Prasenjit
    Kumara, Soundar
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2021, 12 (04)