Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning

被引:13
|
作者
Terbuch, Anika [1 ]
O'Leary, Paul [1 ]
Khalili-Motlagh-Kasmaei, Negin [1 ]
Auer, Peter [2 ]
Zohrer, Alexander [3 ]
Winter, Vincent [3 ]
机构
[1] Univ Leoben, Chair Automation, Dept Prod Engn, A-8700 Leoben, Austria
[2] Univ Leoben, Chair Informat Technol, Dept Math & Informat Technol, A-8700 Leoben, Austria
[3] Keller Grundbau Ges mbH, A-1110 Vienna, Austria
关键词
Machine learning; Anomaly detection; Key performance indicator; Instruments; Buildings; Real-time systems; Quality control; Artificial intelligence in measurement and instrumentation; hybrid learning; key performance indicator (KPI); long short-term memory (LSTM)-variational autoencoder (VAE); outlier detection; time-series; FRAMEWORK; AI;
D O I
10.1109/TIM.2023.3236354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article investigates the use of hybrid machine learning (HML) for the detection of anomalous multivariate time-series (MVTS). Focusing on a specific industrial use-case from geotechnical engineering, where hundreds of MVTS need to be analyzed and classified, has permitted extensive testing of the proposed methods with real measurement data. The novel hybrid anomaly detector combines two means for detection, creating redundancy and reducing the risk of missing defective elements in a safety relevant application. The two parts are: 1) anomaly detection based on approximately 50 physics-motivated key performance indicators (KPIs) and 2) an unsupervised variational autoencoder (VAE) with long short-term memory layers. The KPI captures expert knowledge on the properties of the data that infer the quality of produced elements; these are used as a type of auto-labeling. The goal of the extension using machine learning (ML) is to detect anomalies that the experts may not have foreseen. In contrast to anomaly detection in streaming data, where the goal is to locate an anomaly, each MVTS is complete in itself at the time of evaluation and is categorized as anomalous or nonanomalous. The article compares the performance of different VAE architectures [e.g., long short-term memory (LSTM-VAE) and bidirectional LSTM (BiLSTM-VAE)]. The results of using a genetic algorithm to optimize the hyperparameters of the different architectures are also presented. It is shown that modeling the industrial process as an assemblage of subprocesses yields a better discriminating power and permits the identification of interdependencies between the subprocesses. Interestingly, different autoencoder architectures may be optimal for different subprocesses; here two different architectures are combined to achieve superior performance. Extensive results are presented based on a very large set of real-time measurement data.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [32] Detecting Causality in Multivariate Time Series via Non-Uniform Embedding
    Jia, Ziyu
    Lin, Youfang
    Jiao, Zehui
    Ma, Yan
    Wang, Jing
    ENTROPY, 2019, 21 (12)
  • [33] Time-Series Forecasting of Seasonal Data Using Machine Learning Methods
    Kramar, Vadim
    Alchakov, Vasiliy
    ALGORITHMS, 2023, 16 (05)
  • [34] TIME-SERIES OF MULTIVARIATE DATA IN AQUATIC ECOLOGY
    COBELAS, MA
    VERDUGO, M
    ROJO, C
    AQUATIC SCIENCES, 1995, 57 (03) : 185 - 198
  • [35] Multivariate Time-series Anomaly Detection using SeqVAE-CNN Hybrid Model
    Choi, Taesung
    Lee, Dongkun
    Jung, Yuchae
    Choi, Ho-Jin
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 250 - 253
  • [36] Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques
    Liyew, Chalachew Muluken
    Meo, Rosa
    Di Nardo, Elvira
    Ferraris, Stefano
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 377 - 380
  • [37] Detecting Anomalous Transactions via an IoT Based Application: A Machine Learning Approach for Horse Racing Betting
    Min, Moohong
    Lee, Jemin Justin
    Park, Hyunbeom
    Lee, Kyungho
    SENSORS, 2021, 21 (06) : 1 - 17
  • [38] Detecting and Imaging Irregularities in Time-series Data
    Zhang, Qian
    Lin, Feng
    Seah, Hock Soon
    2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [39] Multivariate Time-Series Forecasting: A Review of Deep Learning Methods in Internet of Things Applications to Smart Cities
    Papastefanopoulos, Vasilis
    Linardatos, Pantelis
    Panagiotakopoulos, Theodor
    Kotsiantis, Sotiris
    SMART CITIES, 2023, 6 (05): : 2519 - 2552
  • [40] DETECTING ADVERSARIAL ATTACKS IN TIME-SERIES DATA
    Abdu-Aguye, Mubarak G.
    Gomaa, Walid
    Makihara, Yasushi
    Yagi, Yasushi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3092 - 3096