Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning

被引:13
|
作者
Terbuch, Anika [1 ]
O'Leary, Paul [1 ]
Khalili-Motlagh-Kasmaei, Negin [1 ]
Auer, Peter [2 ]
Zohrer, Alexander [3 ]
Winter, Vincent [3 ]
机构
[1] Univ Leoben, Chair Automation, Dept Prod Engn, A-8700 Leoben, Austria
[2] Univ Leoben, Chair Informat Technol, Dept Math & Informat Technol, A-8700 Leoben, Austria
[3] Keller Grundbau Ges mbH, A-1110 Vienna, Austria
关键词
Machine learning; Anomaly detection; Key performance indicator; Instruments; Buildings; Real-time systems; Quality control; Artificial intelligence in measurement and instrumentation; hybrid learning; key performance indicator (KPI); long short-term memory (LSTM)-variational autoencoder (VAE); outlier detection; time-series; FRAMEWORK; AI;
D O I
10.1109/TIM.2023.3236354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article investigates the use of hybrid machine learning (HML) for the detection of anomalous multivariate time-series (MVTS). Focusing on a specific industrial use-case from geotechnical engineering, where hundreds of MVTS need to be analyzed and classified, has permitted extensive testing of the proposed methods with real measurement data. The novel hybrid anomaly detector combines two means for detection, creating redundancy and reducing the risk of missing defective elements in a safety relevant application. The two parts are: 1) anomaly detection based on approximately 50 physics-motivated key performance indicators (KPIs) and 2) an unsupervised variational autoencoder (VAE) with long short-term memory layers. The KPI captures expert knowledge on the properties of the data that infer the quality of produced elements; these are used as a type of auto-labeling. The goal of the extension using machine learning (ML) is to detect anomalies that the experts may not have foreseen. In contrast to anomaly detection in streaming data, where the goal is to locate an anomaly, each MVTS is complete in itself at the time of evaluation and is categorized as anomalous or nonanomalous. The article compares the performance of different VAE architectures [e.g., long short-term memory (LSTM-VAE) and bidirectional LSTM (BiLSTM-VAE)]. The results of using a genetic algorithm to optimize the hyperparameters of the different architectures are also presented. It is shown that modeling the industrial process as an assemblage of subprocesses yields a better discriminating power and permits the identification of interdependencies between the subprocesses. Interestingly, different autoencoder architectures may be optimal for different subprocesses; here two different architectures are combined to achieve superior performance. Extensive results are presented based on a very large set of real-time measurement data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detecting and locating patterns in time series using machine learning
    Janka, Dennis
    Lenders, Felix
    Wang, Shiyu
    Cohen, Andrew
    Li, Nuo
    CONTROL ENGINEERING PRACTICE, 2019, 93
  • [22] DETECTION OF IRRIGATED AND RAINFED CROPS WITH MACHINE LEARNING MULTIVARIATE TIME-SERIES OBJECT-BASED CLASSIFICATION USING SENTINEL-2 IMAGERY
    Saquella, Simone
    Ferrari, Alvise
    Pampanoni, Valerio
    Laneve, Giovanni
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3438 - 3441
  • [23] Asymptotic Consistent Graph Structure Learning for Multivariate Time-Series Anomaly Detection
    Pang, Huaxin
    Wei, Shikui
    Li, Youru
    Liu, Ting
    Zhang, Huaqi
    Qin, Ying
    Zhao, Yao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [24] Multiview Graph Contrastive Learning for Multivariate Time-Series Anomaly Detection in IoT
    Qin, Shuxin
    Chen, Lin
    Luo, Yongcan
    Tao, Gaofeng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 22401 - 22414
  • [25] Hybrid of Time Series Regression, Multivariate Generalized Space-Time Autoregressive, and Machine Learning for Forecasting Air Pollution
    Prabowo, Hendri
    Prastyo, Dedy Dwi
    Setiawan
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 351 - 365
  • [26] Robust prediction for characteristics of digestion products in an industrial-scale biogas project via typical non-time series and time-series machine learning algorithms
    Shen, Ruixia
    Sun, Peihao
    Liu, Jie
    Luo, Juan
    Yao, Zonglu
    Zhang, Ruiqiang
    Yu, Jiadong
    Zhao, Lixin
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [27] Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT
    Chen, Zekai
    Chen, Dingshuo
    Zhang, Xiao
    Yuan, Zixuan
    Cheng, Xiuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9179 - 9189
  • [28] MPFormer: Multipatch Transformer for Multivariate Time-Series Anomaly Detection With Contrastive Learning
    Ma, Shenhui
    Nie, Jiahao
    Guan, Siwei
    He, Zhiwei
    Gao, Mingyu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38221 - 38237
  • [29] Multivariate time-series analysis and diffusion maps
    Lian, Wenzhao
    Talmon, Ronen
    Zaveri, Hitten
    Carin, Lawrence
    Coifman, Ronald
    SIGNAL PROCESSING, 2015, 116 : 13 - 28
  • [30] Distance function selection for multivariate time-series
    Morgachev, Gleb
    Goncharov, Alexey
    Strijov, Vadim
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019), 2019, : 66 - 70