Convergence of solutions to nonlinear nonconvex optimal control problems

被引:0
作者
Anh, Lam Quoc [1 ]
Tai, Vo Thanh [2 ,3 ,4 ]
Tam, Tran Ngoc [5 ]
机构
[1] Can Tho Univ, Teacher Coll, Dept Math, Can Tho, Vietnam
[2] Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] An Giang Univ, Fac Educ, Dept Math, Long Xuyen, An Giang, Vietnam
[4] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[5] Can Tho Univ, Coll Nat Sci, Dept Math, Can Tho, Vietnam
关键词
Nonlinear optimal control problem; generalized bounded integrand; convergence condition; fuel-optimal frictionless horizontal motion of a mass point problem; glucose model; LOWER SEMICONTINUITY; STABILITY ANALYSIS; SOLUTION SET; EXISTENCE; THEOREM; CONVEX;
D O I
10.1080/02331934.2023.2239831
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider nonlinear nonconvex optimal control problems and study convergence conditions of their solutions. To be more precise, we first introduce a generalized boundedness condition and discuss its relations with some typical existing ones in the literature. Next, combining this condition with the Gronwall Lemma, we investigate the boundedness property of solutions to state equations and the compactness of feasible sets of the reference problems. Then, based on these obtained results, convergence conditions in the sense of Painleve-Kuratowski for such problems are formulated. Finally, at the end of the paper, applications to two practical situations, problems of fuel-optimal frictionless horizontal motion of a mass point and glucose models, are also presented.
引用
收藏
页码:3859 / 3897
页数:39
相关论文
共 51 条
[21]   STABILITY ANALYSIS OF OPTIMAL CONTROL PROBLEMS WITH A SECOND-ORDER STATE CONSTRAINT [J].
Hermant, Audrey .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) :104-129
[22]  
Jovanovic M., 1989, Optimization, V20, P163, DOI 10.1080/02331938908843426
[23]   A note on strongly convex and quasiconvex functions [J].
Jovanovic, MV .
MATHEMATICAL NOTES, 1996, 60 (5-6) :584-585
[24]   LOWER SEMICONTINUITY OF THE SOLUTION SET TO A PARAMETRIC OPTIMAL CONTROL PROBLEM [J].
Kien, B. T. ;
Toan, N. T. ;
Wong, M. M. ;
Yao, J. C. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) :2889-2906
[25]   On the lower semicontinuity of optimal solution sets [J].
Kien, BT .
OPTIMIZATION, 2005, 54 (02) :123-130
[26]   Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes [J].
Körkel, S ;
Kostina, E ;
Bock, HG ;
Schlöder, JP .
OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (3-4) :327-338
[27]  
Kuratowski K., 1966, TOPOLOGY VOLUME 1
[28]  
Kurdila A. J., 2006, Convex functional analysis
[29]   Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities [J].
Lalitha, C. S. ;
Chatterjee, Prashanto .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (03) :941-961
[30]   On Holder calmness and Holder well-posedness for optimal control problems [J].
Lam Quoc Anh ;
Vo Thanh Tai ;
Tran Ngoc Tam .
OPTIMIZATION, 2022, 71 (10) :3007-3040