Utility of genetic risk scores in type 1 diabetes

被引:29
作者
Luckett, Amber M. M. [1 ]
Weedon, Michael N. N. [1 ]
Hawkes, Gareth [1 ]
Leslie, R. David [2 ]
Oram, Richard A. A. [1 ,3 ]
Grant, Struan F. A. [4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Univ Exeter, Coll Med & Hlth, Exeter, England
[2] Queen Mary Univ London, Blizard Inst, London, England
[3] Royal Devon Univ Healthcare NHS Fdn Trust, Exeter, England
[4] Childrens Hosp Philadelphia, Div Human Genet, Philadelphia, PA 19104 USA
[5] Childrens Hosp Philadelphia, Div Diabet & Endocrinol, Philadelphia, PA 19104 USA
[6] Childrens Hosp Philadelphia, Ctr Spatial & Funct Genom, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[8] Univ Penn, Inst Diabet Obes & Metab, Perelman Sch Med, Philadelphia, PA 19104 USA
[9] Univ Penn, Perelman Sch Med, Dept Pediat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Autoimmune disorders; Diabetes; Genetic risk score; Genetics; Review; Type; 1; diabetes; GENOME-WIDE ASSOCIATION; SUSCEPTIBILITY LOCI; ISLET AUTOANTIBODIES; HLA; PREDICTION; FREQUENCY; DISCRIMINATION; ARCHITECTURE; STANDARDS; VARIANTS;
D O I
10.1007/s00125-023-05955-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.
引用
收藏
页码:1589 / 1600
页数:12
相关论文
共 82 条
[31]  
Kudtarkar Parul, 2023, bioRxiv, DOI 10.1101/2023.02.03.526066
[32]   Adult-Onset Type 1 Diabetes: Current Understanding and Challenges [J].
Leslie, R. David ;
Evans-Molina, Carmella ;
Freund-Brown, Jacquelyn ;
Buzzetti, Raffaella ;
Dabelea, Dana ;
Gillespie, Kathleen M. ;
Goland, Robin ;
Jones, Angus G. ;
Kacher, Mark ;
Phillips, Lawrence S. ;
Rolandsson, Olov ;
Wardian, Jana L. ;
Dunne, Jessica L. .
DIABETES CARE, 2021, 44 (11) :2449-2456
[33]   Development and validation of multivariable clinical diagnostic models to identify type 1 diabetes requiring rapid insulin therapy in adults aged 18-50 years [J].
Lynam, Anita ;
McDonald, Timothy ;
Hill, Anita ;
Dennis, John ;
Oram, Richard ;
Pearson, Ewan ;
Weedon, Michael ;
Hattersley, Andrew ;
Owen, Katharine ;
Shields, Beverley ;
Jones, Angus .
BMJ OPEN, 2019, 9 (09)
[34]   Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation [J].
Mahajan, Anubha ;
Spracklen, Cassandra N. ;
Zhang, Weihua ;
Ng, Maggie C. Y. ;
Petty, Lauren E. ;
Kitajima, Hidetoshi ;
Yu, Grace Z. ;
Rueger, Sina ;
Speidel, Leo ;
Kim, Young Jin ;
Horikoshi, Momoko ;
Mercader, Josep M. ;
Taliun, Daniel ;
Moon, Sanghoon ;
Kwak, Soo-Heon ;
Robertson, Neil R. ;
Rayner, Nigel W. ;
Loh, Marie ;
Kim, Bong-Jo ;
Chiou, Joshua ;
Miguel-Escalada, Irene ;
Parolo, Pietro della Briotta ;
Lin, Kuang ;
Bragg, Fiona ;
Preuss, Michael H. ;
Takeuchi, Fumihiko ;
Nano, Jana ;
Guo, Xiuqing ;
Lamri, Amel ;
Nakatochi, Masahiro ;
Scott, Robert A. ;
Lee, Jung-Jin ;
Huerta-Chagoya, Alicia ;
Graff, Mariaelisa ;
Chai, Jin-Fang ;
Parra, Esteban J. ;
Yao, Jie ;
Bielak, Lawrence F. ;
Tabara, Yasuharu ;
Hai, Yang ;
Steinthorsdottir, Valgerdur ;
Cook, James P. ;
Kals, Mart ;
Grarup, Niels ;
Schmidt, Ellen M. ;
Pan, Ian ;
Sofer, Tamar ;
Wuttke, Matthias ;
Sarnowski, Chloe ;
Gieger, Christian .
NATURE GENETICS, 2022, 54 (05) :560-+
[35]   The TrialNet Natural History Study of the Development of Type 1 Diabetes: objectives, design, and initial results [J].
Mahon, Jeffrey L. ;
Sosenko, Jay M. ;
Rafkin-Mervis, Lisa ;
Krause-Steinrauf, Heidi ;
Lachin, John M. ;
Thompson, Clinton ;
Bingley, Polly J. ;
Bonifacio, Ezio ;
Palmer, Jerry P. ;
Eisenbarth, George S. ;
Wolfsdorf, Joseph ;
Skyler, Jay S. .
PEDIATRIC DIABETES, 2009, 10 (02) :97-104
[36]   Immunological biomarkers for the development and progression of type 1 diabetes [J].
Mathieu, Chantal ;
Lahesmaa, Riitta ;
Bonifacio, Ezio ;
Achenbach, Peter ;
Tree, Timothy .
DIABETOLOGIA, 2018, 61 (11) :2252-2258
[37]   A scientometric review of genome-wide association studies [J].
Mills, Melinda C. ;
Rahal, Charles .
COMMUNICATIONS BIOLOGY, 2019, 2 (1)
[38]   Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC [J].
Mishra, Rajashree ;
Akerlund, Mikael ;
Cousminer, Diana L. ;
Ahlqvist, Emma ;
Bradfield, Jonathan P. ;
Chesi, Alessandra ;
Hodge, Kenyaita M. ;
Guy, Vanessa C. ;
Brillon, David J. ;
Pratley, Richard E. ;
Rickels, Michael R. ;
Vella, Adrian ;
Ovalle, Fernando ;
Harris, Ronald I. ;
Melander, Olle ;
Varvel, Stephen ;
Hakonarson, Hakon ;
Froguel, Phillippe ;
Lonsdale, John T. ;
Mauricio, Didac ;
Schloot, Nanette C. ;
Khunti, Kamlesh ;
Greenbaum, Carla J. ;
Yderstraede, Knud B. ;
Tuomi, Tiinamaija ;
Voight, Benjamin F. ;
Schwartz, Stanley ;
Boehm, Bernhard O. ;
Groop, Leif ;
Leslie, Richard David ;
Grant, Struan F. A. .
DIABETES CARE, 2020, 43 (02) :418-425
[39]   Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes [J].
Mishra, Rajashree ;
Chesi, Alessandra ;
Cousminer, Diana L. ;
Hawa, Mohammad I. ;
Bradfield, Jonathan P. ;
Hodge, Kenyaita M. ;
Guy, Vanessa C. ;
Hakonarson, Hakon ;
Mauricio, Didac ;
Schloot, Nanette C. ;
Yderstraede, Knud B. ;
Voight, Benjamin F. ;
Schwartz, Stanley ;
Boehm, Bernhard O. ;
Leslie, Richard David ;
Grant, Struan F. A. .
BMC MEDICINE, 2017, 15 :1
[40]   Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes [J].
Morris, Andrew P. ;
Voight, Benjamin F. ;
Teslovich, Tanya M. ;
Ferreira, Teresa ;
Segre, Ayellet V. ;
Steinthorsdottir, Valgerdur ;
Strawbridge, Rona J. ;
Khan, Hassan ;
Grallert, Harald ;
Mahajan, Anubha ;
Prokopenko, Inga ;
Kang, Hyun Min ;
Dina, Christian ;
Esko, Tonu ;
Fraser, Ross M. ;
Kanoni, Stavroula ;
Kumar, Ashish ;
Lagou, Vasiliki ;
Langenberg, Claudia ;
Luan, Jian'an ;
Lindgren, Cecilia M. ;
Mueller-Nurasyid, Martina ;
Pechlivanis, Sonali ;
Rayner, N. William ;
Scott, Laura J. ;
Wiltshire, Steven ;
Yengo, Loic ;
Kinnunen, Leena ;
Rossin, Elizabeth J. ;
Raychaudhuri, Soumya ;
Johnson, Andrew D. ;
Dimas, Antigone S. ;
Loos, Ruth J. F. ;
Vedantam, Sailaja ;
Chen, Han ;
Florez, Jose C. ;
Fox, Caroline ;
Liu, Ching-Ti ;
Rybin, Denis ;
Couper, David J. ;
Kao, Wen Hong L. ;
Li, Man ;
Cornelis, Marilyn C. ;
Kraft, Peter ;
Sun, Qi ;
van Dam, Rob M. ;
Stringham, Heather M. ;
Chines, Peter S. ;
Fischer, Krista ;
Fontanillas, Pierre .
NATURE GENETICS, 2012, 44 (09) :981-+