A partial differential equation characterization of anisotropic Hardy spaces

被引:4
作者
Bownik, Marcin [1 ]
Wang, Li-An Daniel [2 ,3 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX USA
[3] Amer Inst Res, Data Sci & Adv Analyt, Arlington, VA USA
关键词
anisotropic Hardy spaces; continuous groups of dilations; parabolic Hardy spaces; HARMONIC-ANALYSIS; OPERATORS;
D O I
10.1002/mana.202100368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a differential characterization for the anisotropic Hardy space HAp$H_A<^>p$ by identifying it with a parabolic Hardy space associated with a general continuous group. This allows HAp$H_A<^>p$ to be defined using a parabolic differential equation of Calderon and Torchinsky. We also provide a classification of dilations corresponding to equivalent anisotropic Hardy spaces with respect to linear transformations.
引用
收藏
页码:2258 / 2275
页数:18
相关论文
共 30 条
[11]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[12]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[13]  
Hofmann S, 2011, MEM AM MATH SOC, V214, P1
[14]   Hardy and BMO spaces associated to divergence form elliptic operators [J].
Hofmann, Steve ;
Mayboroda, Svitlana .
MATHEMATISCHE ANNALEN, 2009, 344 (01) :37-116
[15]   REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES [J].
Huang, Long ;
Liu, Jun ;
Yang, Dachun ;
Yuan, Wen .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) :3033-3082
[16]   Atomic and Littlewood-Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications [J].
Huang, Long ;
Liu, Jun ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) :1991-2067
[17]   DUAL SPACES OF ANISOTROPIC MIXED-NORM HARDY SPACES [J].
Huang, Long ;
Liu, Jun ;
Yang, Dachun ;
Yuan, Wen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) :1201-1215
[18]   Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderon-Zygmund operators [J].
Liu, Jun .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
[19]   Variable Anisotropic Hardy Spaces and Their Applications [J].
Liu, Jun ;
Weisz, Ferenc ;
Yang, Dachun ;
Yuan, Wen .
TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (05) :1173-1216
[20]   Anisotropic variable Hardy-Lorentz spaces and their real interpolation [J].
Liu, Jun ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) :356-393