A partial differential equation characterization of anisotropic Hardy spaces

被引:4
作者
Bownik, Marcin [1 ]
Wang, Li-An Daniel [2 ,3 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX USA
[3] Amer Inst Res, Data Sci & Adv Analyt, Arlington, VA USA
关键词
anisotropic Hardy spaces; continuous groups of dilations; parabolic Hardy spaces; HARMONIC-ANALYSIS; OPERATORS;
D O I
10.1002/mana.202100368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a differential characterization for the anisotropic Hardy space HAp$H_A<^>p$ by identifying it with a parabolic Hardy space associated with a general continuous group. This allows HAp$H_A<^>p$ to be defined using a parabolic differential equation of Calderon and Torchinsky. We also provide a classification of dilations corresponding to equivalent anisotropic Hardy spaces with respect to linear transformations.
引用
收藏
页码:2258 / 2275
页数:18
相关论文
共 30 条
[1]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (02) :703-746
[2]   Atomic and molecular decompositions of anisotropic Besov spaces [J].
Bownik, M .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) :539-571
[3]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[4]   Variable Anisotropic Singular Integral Operators [J].
Bownik, Marcin ;
Li, Baode ;
Li, Jinxia .
CONSTRUCTIVE APPROXIMATION, 2023, 58 (02) :363-406
[5]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1975, 16 (01) :1-64
[6]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION .2. [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1977, 24 (02) :101-171
[7]   A classification of anisotropic Besov spaces [J].
Cheshmavar, Jahangir ;
Fuehr, Hartmut .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) :863-896
[9]   Hardy Spaces on Rn with Pointwise Variable Anisotropy [J].
Dekel, Shai ;
Petrushev, Pencho ;
Weissblat, Tal .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (05) :1066-1107
[10]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973