Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium

被引:9
作者
Zhu, Xi [1 ,2 ]
Kim, Yoojean [2 ]
Ravid, Orren [2 ]
He, Xiaofu [1 ]
Suarez-Jimenez, Benjamin [3 ]
Zilcha-Mano, Sigal [4 ]
Lazarov, Amit [5 ]
Lee, Seonjoo [1 ,2 ]
Abdallah, Chadi G. [6 ,7 ]
Angstadt, Michael [8 ]
Averill, Christopher L. [6 ,7 ]
Baird, C. Lexi [9 ]
Baugh, Lee A. [10 ]
Blackford, Jennifer U. [11 ]
Bomyea, Jessica [12 ]
Bruce, Steven E. [13 ]
Bryant, Richard A. [14 ]
Cao, Zhihong [15 ]
Choi, Kyle [12 ]
Cisler, Josh [16 ]
Cotton, Andrew S. [17 ]
Daniels, Judith K. [18 ]
Davenport, Nicholas D. [19 ]
Davidson, Richard J. [20 ]
Debellis, Michael D. [9 ]
Dennis, Emily L. [21 ]
Densmore, Maria [22 ,23 ,24 ]
deRoon-Cassini, Terri [25 ]
Disner, Seth G. [19 ]
El Hage, Wissam [26 ]
Etkin, Amit [27 ]
Fani, Negar [28 ]
Fercho, Kelene A. [29 ]
Fitzgerald, Jacklynn [30 ]
Forster, Gina L. [31 ]
Frijling, Jessie L. [32 ]
Geuze, Elbert [33 ]
Gonenc, Atilla [34 ]
Gordon, Evan M. [35 ]
Gruber, Staci [34 ]
Grupe, Daniel [20 ]
Guenette, Jeffrey P. [36 ]
Haswell, Courtney C. [9 ]
Herringa, Ryan J. [37 ]
Herzog, Julia [38 ]
Hofmann, David Bernd [39 ]
Hosseini, Bobak [40 ]
Hudson, Anna R. [41 ]
Huggins, Ashley A. [9 ]
Ipser, Jonathan C. [42 ]
机构
[1] Columbia Univ, Med Ctr, Dept Psychiat, New York, NY USA
[2] New York State Psychiat Inst & Hosp, New York, NY 10032 USA
[3] Univ Rochester, Rochester, NY USA
[4] Univ Haifa, Haifa, Israel
[5] Tel Aviv Univ, Tel Aviv, Israel
[6] Baylor Coll Med, Houston, TX 77030 USA
[7] Yale Univ, Sch Med, New Haven, CT USA
[8] Univ Michigan, Ann Arbor, MI 48109 USA
[9] Duke Univ, Durham, NC 27708 USA
[10] Univ South Dakota, Sanford Sch Med, Vermillion, SD USA
[11] Univ Nebraska Med Ctr, Munroe Meyer Inst, Omaha, NE USA
[12] Univ Calif San Diego, La Jolla, CA 92093 USA
[13] Univ Missouri, Dept Psychol Sci, Ctr Trauma Recovery, St Louis, MO 63121 USA
[14] Univ New South Wales, Sch Psychol, Sydney, NSW, Australia
[15] Jiangsu Univ, Affiliated Yixing Hosp, Dept Radiol, Yixing, Jiangsu, Peoples R China
[16] Univ Texas Austin, Dept Psychiat, Austin, TX 78712 USA
[17] Univ Toledo, Toledo, OH 43606 USA
[18] Univ Groningen, Groningen, Netherlands
[19] Minneapolis VA Hlth Care Syst, Minneapolis, MN USA
[20] Univ Wisconsin, Madison, WI USA
[21] Univ Utah, Sch Med, Salt Lake City, UT USA
[22] Western Univ, Neurosci Program, Dept Psychol, London, ON, Canada
[23] Western Univ, Neurosci Program, Dept Psychiat, London, ON, Canada
[24] Univ British Columbia, Dept Psychol, Kelowna, BC, Canada
[25] Med Coll Wisconsin, Milwaukee, WI 53226 USA
[26] Univ Tours, CHRU Tours, INSERM, UMR 1253,CIC 1415, Tours, France
[27] Stanford Univ, Stanford, CA 94305 USA
[28] Emory Univ, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA
[29] US Fed Aviat Adm, Civil Aerosp Med Inst, Oklahoma City, OK USA
[30] Marquette Univ, Milwaukee, WI 53233 USA
[31] Univ Otago, Dept Anat, Brain Hlth Res Ctr, Dunedin, New Zealand
[32] Univ Amsterdam, Acad Med Ctr, Amsterdam Univ Med Ctr, Dept Psychiat, Amsterdam, Netherlands
[33] Minist Def, Brain Res & Innovat Ctr, Utrecht, Netherlands
[34] McLean Hosp, Cognit & Clin Neuroimaging Core, Belmont, MA 02178 USA
[35] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[36] Brigham & Womens Hosp, Div Neuroradiol, Boston, MA 02115 USA
[37] Univ Wisconsin, Sch Med & Publ Hlth, Madison, WI USA
[38] Heidelberg Univ, Heidelberg, Germany
[39] Univ Munster, Munster, Germany
[40] Univ Illinois, Chicago, IL USA
[41] Univ Ghent, Ghent, Belgium
[42] Univ Cape Town, Cape Town, South Africa
[43] Univ Southern Calif, Imaging Genet Ctr, Mark & Mary Stevens Neuroimaging & Informat Inst, Keck Sch Med, Marina Del Rey, CA USA
[44] Baylor Univ, Dept Psychol & Neurosci, Waco, TX 76798 USA
[45] Wayne State Univ, Sch Med, Detroit, MI USA
[46] McLean Hosp, Div Womens Mental Hlth, Belmont, MA 02178 USA
[47] Ludwig Maximilian Univ Munich, Dept Child & Adolescent Psychiat Psychosomat & Ps, Munich, Germany
[48] Brigham & Womens Hosp, Psychiat Neuroimaging Lab, Boston, MA 02115 USA
[49] Radboud Univ Nijmegen, Ctr Cognit Neuroimaging, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[50] Westmead Inst Med Res, Westmead, NSW, Australia
基金
英国医学研究理事会;
关键词
Posttraumatic stress disorder; Multimodal MRI; Machine learning; Deep learning; Classification; POSTTRAUMATIC-STRESS-DISORDER; RESTING-STATE FMRI; TRAUMA SURVIVORS; NETWORK; BIOMARKERS; MODELS;
D O I
10.1016/j.neuroimage.2023.120412
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
引用
收藏
页数:13
相关论文
共 71 条
[11]  
Daniels JK, 2010, J PSYCHIATR NEUROSCI, V35, P258, DOI 10.1503/jpn.090010
[12]   Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium [J].
Dennis, Emily L. ;
Disner, Seth G. ;
Fani, Negar ;
Salminen, Lauren E. ;
Logue, Mark ;
Clarke, Emily K. ;
Haswell, Courtney C. ;
Averill, Christopher L. ;
Baugh, Lee A. ;
Bomyea, Jessica ;
Bruce, Steven E. ;
Cha, Jiook ;
Choi, Kyle ;
Davenport, Nicholas D. ;
Densmore, Maria ;
du Plessis, Stefan ;
Forster, Gina L. ;
Frijling, Jessie L. ;
Gonenc, Atilla ;
Gruber, Staci ;
Grupe, Daniel W. ;
Guenette, Jeffrey P. ;
Hayes, Jasmeet ;
Hofmann, David ;
Ipser, Jonathan ;
Jovanovic, Tanja ;
Kelly, Sinead ;
Kennis, Mitzy ;
Kinzel, Philipp ;
Koch, Saskia B. J. ;
Koerte, Inga ;
Koopowitz, Sheri ;
Korgaonkar, Mayuresh ;
Krystal, John ;
Lebois, Lauren A. M. ;
Li, Gen ;
Magnotta, Vincent A. ;
Manthey, Antje ;
May, Geoff J. ;
Menefee, Deleene S. ;
Nawijn, Laura ;
Nelson, Steven M. ;
Neufeld, Richard W. J. ;
Nitschke, Jack B. ;
O'Doherty, Daniel ;
Peverill, Matthew ;
Ressler, Kerry J. ;
Roos, Annerine ;
Sheridan, Margaret A. ;
Sierk, Anika .
MOLECULAR PSYCHIATRY, 2021, 26 (08) :4315-4330
[13]   Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal [J].
Dinsdale, Nicola K. ;
Jenkinson, Mark ;
Namburete, Ana I. L. .
NEUROIMAGE, 2021, 228
[14]   Stacked Convolutional Denoising Auto-Encoders for Feature Representation [J].
Du, Bo ;
Xiong, Wei ;
Wu, Jia ;
Zhang, Lefei ;
Zhang, Liangpei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) :1017-1027
[15]   ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data [J].
Eslami, Taban ;
Mirjalili, Vahid ;
Fong, Alvis ;
Laird, Angela R. ;
Saeed, Fahad .
FRONTIERS IN NEUROINFORMATICS, 2019, 13
[16]   Machine learning in major depression: From classification to treatment outcome prediction [J].
Gao, Shuang ;
Calhoun, Vince D. ;
Sui, Jing .
CNS NEUROSCIENCE & THERAPEUTICS, 2018, 24 (11) :1037-1052
[17]   Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level [J].
Gong, Q. ;
Li, L. ;
Tognin, S. ;
Wu, Q. ;
Pettersson-Yeo, W. ;
Lui, S. ;
Huang, X. ;
Marquand, A. F. ;
Mechelli, A. .
PSYCHOLOGICAL MEDICINE, 2014, 44 (01) :195-203
[18]   Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex [J].
Han, Kuan ;
Wen, Haiguang ;
Shi, Junxing ;
Lu, Kun-Han ;
Zhang, Yizhen ;
Fu, Di ;
Liu, Zhongming .
NEUROIMAGE, 2019, 198 :125-136
[19]   Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder [J].
Im, Jooyeon Jamie ;
Kim, Binna ;
Hwang, Jaeuk ;
Kim, Jieun E. ;
Kim, Jung Yoon ;
Rhie, Sandy Jeong ;
Namgung, Eun ;
Kang, Ilhyang ;
Moon, Sohyeon ;
Lyoo, In Kyoon ;
Park, Chang-Hyun ;
Yoon, Sujung .
PLOS ONE, 2017, 12 (05)
[20]   Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA-DTI working group [J].
Jahanshad, Neda ;
Kochunov, Peter V. ;
Sprooten, Emma ;
Mandl, Rene C. ;
Nichols, Thomas E. ;
Almasy, Laura ;
Blangero, John ;
Brouwer, Rachel M. ;
Curran, Joanne E. ;
de Zubicaray, Greig I. ;
Duggirala, Ravi ;
Fox, Peter T. ;
Hong, L. Elliot ;
Landman, Bennett A. ;
Martin, Nicholas G. ;
McMahon, Katie L. ;
Medland, Sarah E. ;
Mitchell, Braxton D. ;
Olvera, Rene L. ;
Peterson, Charles P. ;
Starr, John M. ;
Sussmann, Jessika E. ;
Toga, Arthur W. ;
Wardlaw, Joanna M. ;
Wright, Margaret J. ;
Pol, Hilleke E. Hulshoff ;
Bastin, Mark E. ;
McIntosh, Andrew M. ;
Deary, Ian J. ;
Thompson, Paul M. ;
Glahn, David C. .
NEUROIMAGE, 2013, 81 :455-469