Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium

被引:5
作者
Zhu, Xi [1 ,2 ]
Kim, Yoojean [2 ]
Ravid, Orren [2 ]
He, Xiaofu [1 ]
Suarez-Jimenez, Benjamin [3 ]
Zilcha-Mano, Sigal [4 ]
Lazarov, Amit [5 ]
Lee, Seonjoo [1 ,2 ]
Abdallah, Chadi G. [6 ,7 ]
Angstadt, Michael [8 ]
Averill, Christopher L. [6 ,7 ]
Baird, C. Lexi [9 ]
Baugh, Lee A. [10 ]
Blackford, Jennifer U. [11 ]
Bomyea, Jessica [12 ]
Bruce, Steven E. [13 ]
Bryant, Richard A. [14 ]
Cao, Zhihong [15 ]
Choi, Kyle [12 ]
Cisler, Josh [16 ]
Cotton, Andrew S. [17 ]
Daniels, Judith K. [18 ]
Davenport, Nicholas D. [19 ]
Davidson, Richard J. [20 ]
Debellis, Michael D. [9 ]
Dennis, Emily L. [21 ]
Densmore, Maria [22 ,23 ,24 ]
deRoon-Cassini, Terri [25 ]
Disner, Seth G. [19 ]
El Hage, Wissam [26 ]
Etkin, Amit [27 ]
Fani, Negar [28 ]
Fercho, Kelene A. [29 ]
Fitzgerald, Jacklynn [30 ]
Forster, Gina L. [31 ]
Frijling, Jessie L. [32 ]
Geuze, Elbert [33 ]
Gonenc, Atilla [34 ]
Gordon, Evan M. [35 ]
Gruber, Staci [34 ]
Grupe, Daniel [20 ]
Guenette, Jeffrey P. [36 ]
Haswell, Courtney C. [9 ]
Herringa, Ryan J. [37 ]
Herzog, Julia [38 ]
Hofmann, David Bernd [39 ]
Hosseini, Bobak [40 ]
Hudson, Anna R. [41 ]
Huggins, Ashley A. [9 ]
Ipser, Jonathan C. [42 ]
机构
[1] Columbia Univ, Med Ctr, Dept Psychiat, New York, NY USA
[2] New York State Psychiat Inst & Hosp, New York, NY 10032 USA
[3] Univ Rochester, Rochester, NY USA
[4] Univ Haifa, Haifa, Israel
[5] Tel Aviv Univ, Tel Aviv, Israel
[6] Baylor Coll Med, Houston, TX 77030 USA
[7] Yale Univ, Sch Med, New Haven, CT USA
[8] Univ Michigan, Ann Arbor, MI 48109 USA
[9] Duke Univ, Durham, NC 27708 USA
[10] Univ South Dakota, Sanford Sch Med, Vermillion, SD USA
[11] Univ Nebraska Med Ctr, Munroe Meyer Inst, Omaha, NE USA
[12] Univ Calif San Diego, La Jolla, CA 92093 USA
[13] Univ Missouri, Dept Psychol Sci, Ctr Trauma Recovery, St Louis, MO 63121 USA
[14] Univ New South Wales, Sch Psychol, Sydney, NSW, Australia
[15] Jiangsu Univ, Affiliated Yixing Hosp, Dept Radiol, Yixing, Jiangsu, Peoples R China
[16] Univ Texas Austin, Dept Psychiat, Austin, TX 78712 USA
[17] Univ Toledo, Toledo, OH 43606 USA
[18] Univ Groningen, Groningen, Netherlands
[19] Minneapolis VA Hlth Care Syst, Minneapolis, MN USA
[20] Univ Wisconsin, Madison, WI USA
[21] Univ Utah, Sch Med, Salt Lake City, UT USA
[22] Western Univ, Neurosci Program, Dept Psychol, London, ON, Canada
[23] Western Univ, Neurosci Program, Dept Psychiat, London, ON, Canada
[24] Univ British Columbia, Dept Psychol, Kelowna, BC, Canada
[25] Med Coll Wisconsin, Milwaukee, WI 53226 USA
[26] Univ Tours, CHRU Tours, INSERM, UMR 1253,CIC 1415, Tours, France
[27] Stanford Univ, Stanford, CA 94305 USA
[28] Emory Univ, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA
[29] US Fed Aviat Adm, Civil Aerosp Med Inst, Oklahoma City, OK USA
[30] Marquette Univ, Milwaukee, WI 53233 USA
[31] Univ Otago, Dept Anat, Brain Hlth Res Ctr, Dunedin, New Zealand
[32] Univ Amsterdam, Acad Med Ctr, Amsterdam Univ Med Ctr, Dept Psychiat, Amsterdam, Netherlands
[33] Minist Def, Brain Res & Innovat Ctr, Utrecht, Netherlands
[34] McLean Hosp, Cognit & Clin Neuroimaging Core, Belmont, MA 02178 USA
[35] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[36] Brigham & Womens Hosp, Div Neuroradiol, Boston, MA 02115 USA
[37] Univ Wisconsin, Sch Med & Publ Hlth, Madison, WI USA
[38] Heidelberg Univ, Heidelberg, Germany
[39] Univ Munster, Munster, Germany
[40] Univ Illinois, Chicago, IL USA
[41] Univ Ghent, Ghent, Belgium
[42] Univ Cape Town, Cape Town, South Africa
[43] Univ Southern Calif, Imaging Genet Ctr, Mark & Mary Stevens Neuroimaging & Informat Inst, Keck Sch Med, Marina Del Rey, CA USA
[44] Baylor Univ, Dept Psychol & Neurosci, Waco, TX 76798 USA
[45] Wayne State Univ, Sch Med, Detroit, MI USA
[46] McLean Hosp, Div Womens Mental Hlth, Belmont, MA 02178 USA
[47] Ludwig Maximilian Univ Munich, Dept Child & Adolescent Psychiat Psychosomat & Ps, Munich, Germany
[48] Brigham & Womens Hosp, Psychiat Neuroimaging Lab, Boston, MA 02115 USA
[49] Radboud Univ Nijmegen, Ctr Cognit Neuroimaging, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[50] Westmead Inst Med Res, Westmead, NSW, Australia
基金
英国医学研究理事会;
关键词
Posttraumatic stress disorder; Multimodal MRI; Machine learning; Deep learning; Classification; POSTTRAUMATIC-STRESS-DISORDER; RESTING-STATE FMRI; TRAUMA SURVIVORS; NETWORK; BIOMARKERS; MODELS;
D O I
10.1016/j.neuroimage.2023.120412
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
引用
收藏
页数:13
相关论文
共 71 条
  • [1] Permutation importance: a corrected feature importance measure
    Altmann, Andre
    Tolosi, Laura
    Sander, Oliver
    Lengauer, Thomas
    [J]. BIOINFORMATICS, 2010, 26 (10) : 1340 - 1347
  • [2] Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
    Arbabshirani, Mohammad R.
    Plis, Sergey
    Sui, Jing
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2017, 145 : 137 - 165
  • [3] Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments
    Bai, Xiao
    Wang, Xiang
    Liu, Xianglong
    Liu, Qiang
    Song, Jingkuan
    Sebe, Nicu
    Kim, Been
    [J]. PATTERN RECOGNITION, 2021, 120
  • [4] A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
    Behzadi, Yashar
    Restom, Khaled
    Liau, Joy
    Liu, Thomas T.
    [J]. NEUROIMAGE, 2007, 37 (01) : 90 - 101
  • [5] Amygdala functional connectivity in the acute aftermath of trauma prospectively predicts severity of posttraumatic stress symptoms
    Belleau, Emily L.
    Ehret, Lauren E.
    Hanson, Jessica L.
    Brasel, Karen J.
    Larson, Christine L.
    deRoon-Cassini, Terri A.
    [J]. NEUROBIOLOGY OF STRESS, 2020, 12
  • [6] Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors
    Ben-Zion, Ziv
    Zeevi, Yoav
    Keynan, Nimrod Jackob
    Admon, Roee
    Kozlovski, Tal
    Sharon, Haggai
    Halpern, Pinchas
    Liberzon, Israel
    Shalev, Arieh Y.
    Benjamini, Yoav
    Hendler, Talma
    [J]. TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters
    Bruin, Willem B.
    Taylor, Luke
    Thomas, Rajat M.
    Shock, Jonathan P.
    Zhutovsky, Paul
    Abe, Yoshinari
    Alonso, Pino
    Ameis, Stephanie H.
    Anticevic, Alan
    Arnold, Paul D.
    Assogna, Francesca
    Benedetti, Francesco
    Beucke, Jan C.
    Boedhoe, Premika S. W.
    Bollettini, Irene
    Bose, Anushree
    Brem, Silvia
    Brennan, Brian P.
    Buitelaar, Jan K.
    Calvo, Rosa
    Cheng, Yuqi
    Cho, Kang Ik K.
    Dallaspezia, Sara
    Denys, Damiaan
    Ely, Benjamin A.
    Feusner, Jamie D.
    Fitzgerald, Kate D.
    Fouche, Jean-Paul
    Fridgeirsson, Egill A.
    Gruner, Patricia
    Guersel, Deniz A.
    Hauser, Tobias U.
    Hirano, Yoshiyuki
    Hoexter, Marcelo Q.
    Hu, Hao
    Huyser, Chaim
    Ivanov, Iliyan
    James, Anthony
    Jaspers-Fayer, Fern
    Kathmann, Norbert
    Kaufmann, Christian
    Koch, Kathrin
    Kuno, Masaru
    Kvale, Gerd
    Kwon, Jun Soo
    Liu, Yanni
    Lochner, Christine
    Lazaro, Luisa
    Marques, Paulo
    Marsh, Rachel
    [J]. TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
  • [9] Machine Learning for Precision Psychiatry: Opportunities and Challenges
    Bzdok, Danilo
    Meyer-Lindenberg, Andreas
    [J]. BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2018, 3 (03) : 223 - 230
  • [10] Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data
    Cai, Xin-Lu
    Xie, Dong-Jie
    Madsen, Kristoffer H.
    Wang, Yong-Ming
    Bogemann, Sophie Alida
    Cheung, Eric F. C.
    Moller, Arne
    Chan, Raymond C. K.
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (01) : 172 - 184