Duality of Codes Over Non-Unital Rings of Order Four

被引:11
作者
Alahmadi, Adel [1 ]
Melaibari, Asmaa [1 ,2 ]
Sole, Patrick [3 ]
机构
[1] King Abdulaziz Univ, Math Dept, Jeddah, Saudi Arabia
[2] Univ Jeddah, Dept Math, Jeddah 21493, Saudi Arabia
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M, F-13288 Marseilles, France
关键词
Additive codes; LCD codes; non-unital rings; self-dual codes; CLASSIFICATION; ENUMERATION;
D O I
10.1109/ACCESS.2023.3261131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a basic theory of the duality of linear codes over three of the non-unital rings of order four; namely I, E, and H as denoted in (Fine, 1993). A new notion of duality is introduced in the case of the non-commutative ring E. The notion of self-dual codes with respect to this duality coincides with that of quasi self-dual codes over E as introduced in (Alahmadi et al, 2022). We characterize self-dual codes and LCD codes over the three rings, and investigate the properties of their corresponding additive codes over F-4. We study the connection between the dual of any linear code over these rings and the dual of its associated binary codes. A MacWilliams formula is established for linear codes over E.
引用
收藏
页码:53120 / 53133
页数:14
相关论文
共 21 条
[1]  
Alahmadi A., 2023, QUASISELF DUAL CODES
[2]   Type IV codes over a non-unital ring [J].
Alahmadi, Adel ;
Altassan, Alaa ;
Basaffar, Widyan ;
Shoaib, Hatoon ;
Bonnecaze, Alexis ;
Sole, Patrick .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (07)
[3]   Quasi type IV codes over a non-unital ring [J].
Alahmadi, Adel ;
Altassan, Alaa ;
Basaffar, Widyan ;
Bonnecaze, Alexis ;
Shoaib, Hatoon ;
Sole, Patrick .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (03) :217-228
[4]  
Alahmadi Adel, 2020, Proyecciones (Antofagasta), V39, P1083
[5]  
Alahmadi Adel, 2020, Proyecciones (Antofagasta), V39, P963
[6]   On the classification of linear complementary dual codes [J].
Araya, Makoto ;
Harada, Masaaki .
DISCRETE MATHEMATICS, 2019, 342 (01) :270-278
[7]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[8]   COMPLEMENTARY DUAL CODES FOR COUNTER-MEASURES TO SIDE-CHANNEL ATTACKS [J].
Carlet, Claude ;
Guilley, Sylvain .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) :131-150
[9]  
Fine B., 1993, Math. Mag, V66, P248, DOI [10.1080/0025570X.1993.11996133, DOI 10.1080/0025570X.1993.11996133]
[10]  
Huffman W Cary, 2021, Concise encyclopedia of coding theory