Ferrihydrite-loaded water hyacinth-derived biochar for efficient removal of glyphosate from aqueous solution

被引:8
|
作者
Meng, Wenchao [1 ]
Li, Xiaodi [1 ]
Yu, Junxia [1 ]
Xiao, Chunqiao [1 ]
Hou, Haobo [2 ]
Chi, Ruan [1 ,3 ]
Feng, Guoqing [4 ]
机构
[1] Wuhan Inst Technol, Sch Chem & Environm Engn, Key Lab Novel Biomass Based Environm & Energy Mat, Hubei Novel Reactor & Green Chem Technol Key Lab, 693 Xiongchu Ave, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Zhaoqing GD, HK & MO Environ Technol Res INST, Zhaoqing, Guangdong, Peoples R China
[3] Hubei Three gorges Lab, Yichang, Hubei, Peoples R China
[4] Hubei Fuxing Environm Protect Engn Co LTD, Hanchuan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Ferrihydrite; Biochar; Glyphosate; Adsorption; PHOSPHATE ADSORPTION; ACTIVATED CARBON; COMPOSITE; CAPACITY; ARSENATE; RECOVERY;
D O I
10.1007/s11356-023-26612-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ferrihydrite-loaded water hyacinth-derived biochar (FH/WHBC) was prepared by in-situ precipitation method to treat glyphosate-containing wastewater. The adsorption properties and mechanism, and actual application potential were deeply studied. Results showed that the adsorption performance of FH/WHBC was closely related with the precipitation pH condition, and the adsorbent prepared at pH 5.0 possessed the highest adsorption capacity of 116.8 mg/g for glyphosate. The isothermal and kinetic experiments showed that the adsorption of glyphosate was consistent with Langmuir model, and the adsorption process was rapid and could be achieved within 30 min. The prepared FH/WHBC was more suitable for application under high acidity environment, and could maintain the great adsorption performances in the presence of most co-existing ions. Besides, it also possessed a good regenerability. Under dynamic condition, the adsorption performance of FH/WHBC was not affected even at high flow rate and high glyphosate concentration. Furthermore, the FH/WHBC can keep excellent removal efficiency for glyphosate in wastewater treatment, and the concentration of glyphosate can be reduced to 0.06 mg center dot L-1, which was lower than the groundwater quality of class II mandated in China. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) characterization indicated that the adsorption of glyphosate on FH/WHBC was mainly accomplished through electrostatic adsorption and the formation of inner-sphere complexes. In brief, the prepared sorbent FH/WHBC was expected to be used in the treatment of industrial glyphosate wastewater.
引用
收藏
页码:57410 / 57422
页数:13
相关论文
共 50 条
  • [41] Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution
    Jung, Kyung-Won
    Jeong, Tae-Un
    Kang, Ho-Jeong
    Ahn, Kyu-Hong
    BIORESOURCE TECHNOLOGY, 2016, 211 : 108 - 116
  • [42] Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution
    Jang, Jiseon
    Miran, Waheed
    Divine, Sewu D.
    Nawaz, Mohsin
    Shahzad, Asif
    Woo, Seung Han
    Lee, Dae Sung
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 615 : 698 - 707
  • [43] Preparation of Chestnut Shell Biochar Loaded with Zinc/Manganese for Effective Removal of Oxytetracycline from Aqueous Solution
    Li, H.
    Liu, Q.
    Yang, Z.
    Ji, G.
    Lu, X.
    Zhang, Z.
    Lan, S.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2025, 95 (03) : 580 - 592
  • [44] Kinetic studies of the removal of methylene blue from aqueous solution by biochar derived from jackfruit peel
    Ton-That, Loc
    Huynh, Thi-Ngoc-Linh
    Duong, Bich-Ngoc
    Nguyen, Duy-Khoi
    Nguyen, Ngoc-An
    Pham, Van-Hien
    Ho, Thien-Hoang
    Dinh, Van-Phuc
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (11)
  • [45] Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
    Yao, Ying
    Gao, Bin
    Inyang, Mandu
    Zimmerman, Andrew R.
    Cao, Xinde
    Pullammanappallil, Pratap
    Yang, Liuyan
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 190 (1-3) : 501 - 507
  • [46] Removal of triclosan from aqueous solution using biochar derived from seed shell of Aesculus turbinata
    Cho, Eun-Ji
    Moon, Joon-Kwan
    Lee, Chang-Gu
    Park, Seong-Jik
    DESALINATION AND WATER TREATMENT, 2022, 266 : 256 - 267
  • [47] Kinetic studies of the removal of methylene blue from aqueous solution by biochar derived from jackfruit peel
    Loc Ton-That
    Thi-Ngoc-Linh Huynh
    Bich-Ngoc Duong
    Duy-Khoi Nguyen
    Ngoc-An Nguyen
    Van-Hien Pham
    Thien-Hoang Ho
    Van-Phuc Dinh
    Environmental Monitoring and Assessment, 2023, 195
  • [48] Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell
    Meng, Qingmei
    Zhang, Yanli
    Meng, Di
    Liu, Xinpeng
    Zhang, Zijian
    Gao, Peiling
    Lin, Aiguo
    Hou, Lian
    ENVIRONMENTAL RESEARCH, 2020, 191
  • [49] Glyphosate Removal from Water Using Biochar Based Coffee Husk Loaded Fe3O4
    Lita, Arestha Leo
    Hidayat, Endar
    Sarbani, Nur Maisarah Mohamd
    Harada, Hiroyuki
    Yonemura, Seiichiro
    Mitoma, Yoshiharu
    Herviyanti
    Gusmini
    WATER, 2023, 15 (16)
  • [50] Removal of glyphosate from aqueous environment by adsorption using water industrial residual
    Hu, Y. S.
    Zhao, Y. Q.
    Sorohan, B.
    DESALINATION, 2011, 271 (1-3) : 150 - 156