Safe Reinforcement Learning for Model-Reference Trajectory Tracking of Uncertain Autonomous Vehicles With Model-Based Acceleration

被引:23
作者
Hu, Yifan [1 ]
Fu, Junjie [1 ,2 ]
Wen, Guanghui [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2023年 / 8卷 / 03期
基金
中国国家自然科学基金;
关键词
Safety; Predictive models; Trajectory tracking; Training; Reinforcement learning; Heuristic algorithms; Uncertainty; Model-reference control; autonomous vehicle; safe reinforcement learning; model-based reinforcement learning; Gaussian process; control barrier function;
D O I
10.1109/TIV.2022.3233592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Applying reinforcement learning (RL) algorithms to control systems design remains a challenging task due to the potential unsafe exploration and the low sample efficiency. In this paper, we propose a novel safe model-based RL algorithm to solve the collision-free model-reference trajectory tracking problem of uncertain autonomous vehicles (AVs). Firstly, a new type of robust control barrier function (CBF) condition for collision-avoidance is derived for the uncertain AVs by incorporating the estimation of the system uncertainty with Gaussian process (GP) regression. Then, a robust CBF-based RL control structure is proposed, where the nominal control input is composed of the RL policy and a model-based reference control policy. The actual control input obtained from the quadratic programming problem can satisfy the constraints of collision-avoidance, input saturation and velocity boundedness simultaneously with a relatively high probability. Finally, within this control structure, a Dyna-style safe model-based RL algorithm is proposed, where the safe exploration is achieved through executing the robust CBF-based actions and the sample efficiency is improved by leveraging the GP models. The superior learning performance of the proposed RL control structure is demonstrated through simulation experiments.
引用
收藏
页码:2332 / 2344
页数:13
相关论文
共 50 条
  • [31] Data-efficient model-based reinforcement learning with trajectory discrimination
    Tuo Qu
    Fuqing Duan
    Junge Zhang
    Bo Zhao
    Wenzhen Huang
    Complex & Intelligent Systems, 2024, 10 : 1927 - 1936
  • [32] A Safe and Data-Efficient Model-Based Reinforcement Learning System for HVAC Control
    Ding, Xianzhong
    An, Zhiyu
    Rathee, Arya
    Du, Wan
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 8014 - 8032
  • [33] Model-Based Transfer Reinforcement Learning Based on Graphical Model Representations
    Sun, Yuewen
    Zhang, Kun
    Sun, Changyin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 1035 - 1048
  • [34] Model-based reinforcement learning with model error and its application
    Tajima, Yoshiyuki
    Onisawa, Takehisa
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1333 - 1336
  • [35] Model-Based Reinforcement Learning in Robotics: A Survey
    Sun S.
    Lan X.
    Zhang H.
    Zheng N.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (01): : 1 - 16
  • [36] Safe Reinforcement Learning by Shielding based Reachable Zonotopes for Autonomous Vehicles
    Raeesi, H.
    Khosravi, A.
    Sarhadi, P.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2025, 38 (01): : 21 - 34
  • [37] Federated Ensemble Model-Based Reinforcement Learning in Edge Computing
    Wang, Jin
    Hu, Jia
    Mills, Jed
    Min, Geyong
    Xia, Ming
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (06) : 1848 - 1859
  • [38] Safe Reinforcement Learning by Shielding based Reachable Zonotopes for Autonomous Vehicles
    Raeesi, H.
    Khosravi, A.
    Sarhadi, P.
    International Journal of Engineering, Transactions A: Basics, 2025, 38 (01): : 21 - 34
  • [39] Digital Twin-Driven VCTS Control: An Iterative Apporach Using Model-Based Reinforcement Learning
    Ye, Zijie
    Zhu, Li
    Li, Yang
    Wang, Hongwei
    Yu, F. Richard
    Tang, Tao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 3913 - 3924
  • [40] Trajectory tracking control of autonomous vehicles based on Lagrangian neural network dynamics model
    Yang, Wei
    Cai, Yingfeng
    Sun, Xiaoqiang
    He, Youguo
    Yuan, Chaochun
    Wang, Hai
    Chen, Long
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (12) : 3483 - 3498