The global bifurcation and geometric properties of steady periodic equatorial internal waves with fixed-depth

被引:0
作者
Dai, Guowei [1 ]
Xu, Fei [2 ]
Zhang, Yong [3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Analytic bifurcation; Large amplitude; Equatorial internal waves; Fixed depth; Symmetry; GRAVITY WATER-WAVES; CONSTANT VORTICITY; SYMMETRY; SURFACE;
D O I
10.1016/j.jde.2023.02.065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly consider steady periodic equatorial internal waves with a fixed mean depth d > 0. By extending the local bifurcation curve obtained in [1], we prove the existence of equatorial internal waves of large amplitude, where the analytic bifurcation theorem and analysis of nodal patterns play a key role. Furthermore, we also obtain some important geometric properties on equatorial internal waves, including the concavity and convexity and symmetry of wave profile.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 413
页数:21
相关论文
共 37 条
[1]   On the symmetry of equatorial travelling water waves with constant vorticity and stagnation points [J].
Aivaliotis, Alexios .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 :159-171
[2]  
[Anonymous], 1971, J. Funct. Anal., DOI [10.1016/0022-1236(71)90030-9, DOI 10.1016/0022-1236(71)90030-9]
[3]  
[Anonymous], 1934, J. Math. Pures Appl.
[4]  
Buffoni B., 2003, ANAL THEORY GLOBAL B
[5]   Variational Formulation of Rotational Steady Water Waves in Two-Layer Flows [J].
Chu, Jifeng ;
Ding, Qixing ;
Escher, Joachim .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
[6]   Analyticity of rotational traveling gravity two-layer waves [J].
Chu, Jifeng ;
Wang, Ling-Jun .
STUDIES IN APPLIED MATHEMATICS, 2021, 146 (03) :605-634
[7]   Steady periodic waves and formal stability for fixed-depth rotational equatorial flows [J].
Chu, Jifeng ;
Ding, Qixing ;
Yang, Yanjuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) :4192-4214
[8]   STEADY PERIODIC EQUATORIAL WATER WAVES WITH VORTICITY [J].
Chu, Jifeng ;
Escher, Joachim .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) :4713-4729
[9]  
Constantin A, 2011, CBMS-NSF MA, V81, P1, DOI 10.1137/1.9781611971873
[10]   Equatorial Wave-Current Interactions [J].
Constantin, A. ;
Ivanov, R. I. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) :1-48