Existence and concentration behavior of solutions for the logarithmic Schrodinger-Poisson system with steep potential

被引:5
作者
Peng, Xueqin [1 ]
Jia, Gao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 01期
基金
中国国家自然科学基金;
关键词
Logarithmic Schrodinger-Poisson system; Variational methods; Penalization method; Concentration behavior; MULTIPLE SOLUTIONS; EQUATIONS;
D O I
10.1007/s00033-022-01922-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following logarithmic Schrodinger-Poisson system: { -delta u + lambda V (x)u + q(x)phi u = u log u(2), in R-3,-delta phi = q(x)u(2), in R-3, where lambda > 0, V (x) E C(R-3,R) and q(x) > 0 for all x E R-3. Under the suitable conditions on potential V (x) and q(x), by proceeding a new penalization scheme to the nonlocal term phi, combining with a new version of Minimax method, we prove the existence of positive solution u(lambda) E H-1(R-3) of the above system for lambda > 0 large enough. Moreover, we also investigate the concentration behavior of lu(lambda)} as lambda -> +infinity.
引用
收藏
页数:21
相关论文
共 38 条
[1]   Multi-bump positive solutions for a logarithmic Schrodinger equation with deepening potential well [J].
Alves, Claudianor O. ;
Ji, Chao .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) :1577-1598
[2]   Existence and concentration of positive solutions for a logarithmic Schrodinger equation via penalizationmethod [J].
Alves, Claudianor O. ;
Ji, Chao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
[3]   On concentration of solution to a Schrodinger logarithmic equation with deepening potential well [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. ;
Figueiredo, Giovany M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (14) :4862-4875
[4]  
Alves CO, 2019, Z ANGEW MATH PHYS, V70, DOI 10.1007/s00033-019-1085-3
[5]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)
[6]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[7]  
Benci Vieri, 1998, TOPOL METHOD NONL AN, V11, P283
[8]  
Benmlih K., 2002, P 2002 FEZ C PARTIAL, V9, P65
[9]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[10]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543