Development and application of novel performance validity metrics for computerized neurocognitive batteries

被引:7
作者
Scott, J. Cobb [1 ,2 ]
Moore, Tyler M. [1 ]
Roalf, David R. [1 ]
Satterthwaite, Theodore D. [1 ]
Wolf, Daniel H. [1 ]
Port, Allison M. [1 ]
Butler, Ellyn R. [1 ]
Ruparel, Kosha [1 ]
Nievergelt, Caroline M. [4 ,5 ]
Risbrough, Victoria B. [4 ,5 ]
Baker, Dewleen G. [4 ,5 ]
Gur, Raquel E. [1 ,3 ]
Gur, Ruben C. [1 ,2 ,3 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA
[2] VISN4 Mental Illness Res Educ & Clin Ctr, Corporal Michael J Crescenz VA Med Ctr, Philadelphia, PA 19104 USA
[3] Childrens Hosp Philadelphia, Lifespan Brain Inst, Dept Child & Adolescent Psychiat & Behav Sci, Philadelphia, PA USA
[4] Ctr Excellent Stress & Mental Hlth, VA San Diego Healthcare Syst, San Diego, CA USA
[5] Univ Calif UCSD, Dept Psychiat, San Diego, CA USA
关键词
validity; psychometrics; item response theory; neuropsychological testing; malingering; learning and memory tests; PSYCHOSIS SPECTRUM; SYMPTOM VALIDITY; MILITARY SERVICE; MEMORY TEST; BASE RATES; SCHIZOPHRENIA; VALIDATION; FIT;
D O I
10.1017/S1355617722000893
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objectives:Data from neurocognitive assessments may not be accurate in the context of factors impacting validity, such as disengagement, unmotivated responding, or intentional underperformance. Performance validity tests (PVTs) were developed to address these phenomena and assess underperformance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the Penn Computerized Neurocognitive Battery (PennCNB). Methods:We first developed these validity measures using simulations of invalid response patterns with parameters drawn from real data. Next, we examined their application in two large, independent samples: 1) children and adolescents from the Philadelphia Neurodevelopmental Cohort (n = 9498); and 2) adult servicemembers from the Marine Resiliency Study-II (n = 1444). Results:Our performance validity metrics detected patterns of invalid responding in simulated data, even at subtle levels. Furthermore, a combination of these metrics significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic groups did not show reduced validity estimates. Conclusions:These results provide proof-of-concept evidence for multivariate, data-driven performance validity metrics. These metrics offer a novel method for determining the performance validity for individual neurocognitive tests that is scalable, applicable across different tests, less burdensome, and dimensional. However, more research is needed into their application.
引用
收藏
页码:789 / 797
页数:9
相关论文
共 56 条
  • [11] AN INDEX OFF AN INDIVIDUALS AGREEMENT WITH GROUP-DETERMINED ITEM DIFFICULTIES
    DONLON, TF
    FISCHER, FE
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1968, 28 (01) : 105 - &
  • [12] Aggregating validity indicators: The salience of domain specificity and the indeterminate range in multivariate models of performance validity assessment
    Erdodi, Laszlo A.
    [J]. APPLIED NEUROPSYCHOLOGY-ADULT, 2019, 26 (02) : 155 - 172
  • [13] Estimation of Response Styles Using the Multidimensional Nominal Response Model: A Tutorial and Comparison With Sum Scores
    Falk, Carl F.
    Ju, Unhee
    [J]. FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [14] The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight
    Garrett-Bakelman, Francine E.
    Darshi, Manjula
    Green, Stefan J.
    Gur, Ruben C.
    Lin, Ling
    Macias, Brandon R.
    McKenna, Miles J.
    Meydan, Cem
    Mishra, Tejaswini
    Nasrini, Jad
    Piening, Brian D.
    Rizzardi, Lindsay F.
    Sharma, Kumar
    Siamwala, Jamila H.
    Taylor, Lynn
    Vitaterna, Martha Hotz
    Afkarian, Maryam
    Afshinnekoo, Ebrahim
    Ahadi, Sara
    Ambati, Aditya
    Arya, Maneesh
    Bezdan, Daniela
    Callahan, Colin M.
    Chen, Songjie
    Choi, Augustine M. K.
    Chlipala, George E.
    Contrepois, Kevin
    Covington, Marisa
    Crucian, Brian E.
    De Vivo, Immaculata
    Dinges, David F.
    Ebert, Douglas J.
    Feinberg, Jason I.
    Gandara, Jorge A.
    George, Kerry A.
    Goutsias, John
    Grills, George S.
    Hargens, Alan R.
    Heer, Martina
    Hillary, Ryan P.
    Hoofnagle, Andrew N.
    Hook, Vivian Y. H.
    Jenkinson, Garrett
    Jiang, Peng
    Keshavarzian, Ali
    Laurie, Steven S.
    Lee-McMullen, Brittany
    Lumpkins, Sarah B.
    MacKay, Matthew
    Maienschein-Cline, Mark G.
    [J]. SCIENCE, 2019, 364 (6436) : 144 - +
  • [15] Reliability, performance characteristics, construct validity, and an initial clinical application of a visual object learning test (VOLT)
    Glahn, DC
    Gur, RC
    Ragland, JD
    Censits, DM
    Gur, RE
    [J]. NEUROPSYCHOLOGY, 1997, 11 (04) : 602 - 612
  • [16] Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study
    Greenwood, Tiffany A.
    Lazzeroni, Laura C.
    Maihofer, Adam X.
    Swerdlow, Neal R.
    Calkins, Monica E.
    Freedman, Robert
    Green, Michael F.
    Light, Gregory A.
    Nievergelt, Caroline M.
    Nuechterlein, Keith H.
    Radant, Allen D.
    Siever, Larry J.
    Silverman, Jeremy M.
    Stone, William S.
    Sugar, Catherine A.
    Tsuang, Debby W.
    Tsuang, Ming T.
    Turetsky, Bruce I.
    Gur, Ruben C.
    Gur, Raquel E.
    Braff, David L.
    [J]. JAMA PSYCHIATRY, 2019, 76 (12) : 1274 - 1284
  • [17] Genetics of schizophrenia in the South African Xhosa
    Gulsuner, S.
    Stein, D. J.
    Susser, E. S.
    Sibeko, G.
    Pretorius, A.
    Walsh, T.
    Majara, L.
    Mndini, M. M.
    Mqulwana, S. G.
    Ntola, O. A.
    Casadei, S.
    Ngqengelele, L. L.
    Korchina, V.
    van der Merwe, C.
    Malan, M.
    Fader, K. M.
    Feng, M.
    Willoughby, E.
    Muzny, D.
    Baldinger, A.
    Andrews, H. F.
    Gur, R. C.
    Gibbs, R. A.
    Zingela, Z.
    Nagdee, M.
    Ramesar, R. S.
    King, M. -C.
    McClellan, J. M.
    [J]. SCIENCE, 2020, 367 (6477) : 569 - +
  • [18] Computerized neurocognitive scanning: II. The profile of schizophrenia
    Gur, RC
    Ragland, JD
    Moberg, PJ
    Bilker, WB
    Kohler, C
    Siegel, SJ
    Gur, RE
    [J]. NEUROPSYCHOPHARMACOLOGY, 2001, 25 (05) : 777 - 788
  • [19] Neurocognitive Growth Charting in Psychosis Spectrum Youths
    Gur, Ruben C.
    Calkins, Monica E.
    Satterthwaite, Theodore D.
    Ruparel, Kosha
    Bilker, Warren B.
    Moore, Tyler M.
    Savitt, Adam P.
    Hakonarson, Hakon
    Gur, Raquel E.
    [J]. JAMA PSYCHIATRY, 2014, 71 (04) : 366 - 374
  • [20] Age Group and Sex Differences in Performance on a Computerized Neurocognitive Battery in Children Age 8-21
    Gur, Ruben C.
    Richard, Jan
    Calkins, Monica E.
    Chiavacci, Rosetta
    Hansen, John A.
    Bilker, Warren B.
    Loughead, James
    Connolly, John J.
    Qiu, Haijun
    Mentch, Frank D.
    Abou-Sleiman, Patrick M.
    Hakonarson, Hakon
    Gur, Raquel E.
    [J]. NEUROPSYCHOLOGY, 2012, 26 (02) : 251 - 265