Existence of solutions to nonlinear Katugampola fractional differential equations with mixed fractional boundary conditions

被引:3
作者
Lupinska, Barbara [1 ]
机构
[1] Univ Bialystok, Inst Comp Sci, Bialystok, Poland
关键词
fixed-point theorem; Katugampola fractional derivative; mixed boundary value problem; nonlinear fractional differential equations;
D O I
10.1002/mma.8894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the existence and the uniqueness of solutions for a class of nonlinear fractional differential equations with a mixed fractional boundary value, by using Banach fixed-point theorem. Moreover, we compare obtained results with another two works considering similar problem.
引用
收藏
页码:12007 / 12017
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2014, LECT NOTES ELECT ENG
[2]  
[Anonymous], 2006, APPL SIGNALS SYST SI, V86, P2503
[3]  
Basti B., 2019, J MATH APPL, V42, P35, DOI DOI 10.7862/RF.2019.3
[4]  
Kaczorek T, 2011, LECT NOTES CONTR INF, V411, P1, DOI 10.1007/978-3-642-20502-6
[5]   Applying new fixed point theorems on fractional and ordinary differential equations [J].
Karapinar, Erdal ;
Abdeljawad, Thabet ;
Jarad, Fahd .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[6]  
Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1
[7]   New approach to a generalized fractional integral [J].
Katugampola, Udita N. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :860-865
[8]   Subdiffusion equation with Caputo fractional derivative with respect to another function [J].
Kosztolowicz, Tadeusz ;
Dutkiewicz, Aldona .
PHYSICAL REVIEW E, 2021, 104 (01)
[9]   Existence of solutions for a mixed fractional boundary value problem [J].
Lakoud, A. Guezane ;
Khaldi, R. ;
Kilicman, Adem .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[10]  
Lupinska B., 2021, TATRA MT MATH PUBL, V79, P135