Triangular pyramid nanostructure enhanced photothermal utilization of noble metal nanoparticles

被引:7
作者
Chen, Xiaowen [1 ]
Qin, Caiyan [2 ]
Yang, Liu [3 ]
Li, Xiaoke [4 ]
Wu, Xiaohu [5 ]
Zhang, Bin [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[3] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210000, Peoples R China
[4] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[5] Shandong Inst Adv Technol, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface plasmon resonance; Triangular pyramid nanostructure; Photothermal applications;
D O I
10.1016/j.ijthermalsci.2024.108980
中图分类号
O414.1 [热力学];
学科分类号
摘要
The triangular pyramid nanostructure (TPN) raises a perfect prerequisite for the aggregation of surface plasmon resonances (SPRs). However, the application of TPN in thermoplasmonics has not yet been developed. The aim of this study is to explore the development potential of TPNs for enhanced noble metal photothermal applications. We investigated the optical absorption properties, photothermal conversion efficiency, and photothermal response under continuous wave irradiation of TPNs based on Ag and Au nanomaterials. The results show that TPN helps to enhance the SPR excitation of Ag and Au in the near-infrared. TPN based on noble metal nanomaterials shows good light absorption capacity and photothermal response. The photothermal conversion efficiencies of the TPN nanoparticle suspensions increased by 56.95% (Ag) and 49.57% (Au), respectively, compared to the same volume of noble metal nanospheres. This work is intended to researchers better understand the development potential of TPN in thermoplasmonics applications.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Applications and challenges of thermoplasmonics [J].
Baffou, Guillaume ;
Cichos, Frank ;
Quidant, Romain .
NATURE MATERIALS, 2020, 19 (09) :946-958
[2]  
Bohren C., 2004, Absorption and Scattering of Light by Small Particles
[3]   Beer-Lambert law [J].
Calloway, D .
JOURNAL OF CHEMICAL EDUCATION, 1997, 74 (07) :744-744
[4]   2D layer stacked metallic Cu-serine triangular pyramids and their surface plasmon resonance properties [J].
Chandran, Neeli ;
Bayal, Manikanta ;
Pilankatta, Rajendra ;
Nair, Swapna S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 127
[5]   Nanosecond Photothermal Effects in Plasmonic Nanostructures [J].
Chen, Xi ;
Chen, Yiting ;
Yan, Min ;
Qiu, Min .
ACS NANO, 2012, 6 (03) :2550-2557
[6]   Solar-thermal conversion performance of heterogeneous nanofluids [J].
Chen, Xingyu ;
Chen, Meijie ;
Zhou, Ping .
RENEWABLE ENERGY, 2022, 198 :1307-1317
[7]   Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids [J].
Chen, Zhuo ;
Chen, Meijie ;
Yan, Hongjie ;
Zhou, Ping ;
Chen, XingYu .
APPLIED THERMAL ENGINEERING, 2020, 178
[8]   Solar Selective Absorbers for High-efficiency Photothermal Conversion via Core-Shell Nanocone Structured Surface [J].
Da, Yun ;
Xie, Meiqiu .
PLASMONICS, 2021, 16 (02) :589-597
[9]   Core-shell ZnO@CuInS2 hexagonal nanopyramids with improved photo-conversion efficiency [J].
Das, Kajari ;
Ghosh, Sirshendu ;
Chakrabarti, Kaushik ;
Paul, Sumana ;
Sinha, Godhuli ;
Lahtinen, J. ;
Jana, D. ;
De, S. K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 :326-334
[10]   Experimental investigation on the plasmonic blended nanofluid for efficient solar absorption [J].
Duan, Huiling ;
Zheng, Yuan ;
Xu, Chang ;
Shang, Yuanfang ;
Ding, Fan .
APPLIED THERMAL ENGINEERING, 2019, 161