IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm

被引:15
|
作者
Yaras, Sami [1 ]
Dener, Murat [1 ]
机构
[1] Gazi Univ, Grad Sch Nat & Appl Sci, Dept Informat Secur Engn, TR-06560 Ankara, Turkiye
关键词
DDoS attacks; big data; intrusion detection system; hybrid algorithm; deep learning; machine learning; multi-class classification; IoT security;
D O I
10.3390/electronics13061053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most significant threat that networks established in IoT may encounter is cyber attacks. The most commonly encountered attacks among these threats are DDoS attacks. After attacks, the communication traffic of the network can be disrupted, and the energy of sensor nodes can quickly deplete. Therefore, the detection of occurring attacks is of great importance. Considering numerous sensor nodes in the established network, analyzing the network traffic data through traditional methods can become impossible. Analyzing this network traffic in a big data environment is necessary. This study aims to analyze the obtained network traffic dataset in a big data environment and detect attacks in the network using a deep learning algorithm. This study is conducted using PySpark with Apache Spark in the Google Colaboratory (Colab) environment. Keras and Scikit-Learn libraries are utilized in the study. 'CICIoT2023' and 'TON_IoT' datasets are used for training and testing the model. The features in the datasets are reduced using the correlation method, ensuring the inclusion of significant features in the tests. A hybrid deep learning algorithm is designed using one-dimensional CNN and LSTM. The developed method was compared with ten machine learning and deep learning algorithms. The model's performance was evaluated using accuracy, precision, recall, and F1 parameters. Following the study, an accuracy rate of 99.995% for binary classification and 99.96% for multiclassification is achieved in the 'CICIoT2023' dataset. In the 'TON_IoT' dataset, a binary classification success rate of 98.75% is reached.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Hybrid intrusion detection system for wireless IoT networks using deep learning algorithm
    Simon, Judy
    Kapileswar, N.
    Polasi, Phani Kumar
    Elaveini, M. Aarthi
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [2] IoT-based intrusion detection system for healthcare using RNNBiLSTM deep learning strategy with custom features
    Jeyanthi, D. V.
    Indrani, B.
    SOFT COMPUTING, 2023, 27 (16) : 11915 - 11930
  • [3] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [4] Intrusion Detection in IoT Networks Using Deep Learning Algorithm
    Susilo, Bambang
    Sari, Riri Fitri
    INFORMATION, 2020, 11 (05)
  • [5] A Novel IoT-Based Explainable Deep Learning Framework for Intrusion Detection Systems
    El Houda Z.A.
    Brik B.
    Senouci S.-M.
    IEEE Internet of Things Magazine, 2022, 5 (02): : 20 - 23
  • [6] Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning
    Shahid, Usama
    Hussain, Muhammad Zunnurain
    Hasan, Muhammad Zulkifl
    Haider, Ali
    Ali, Jibran
    Altaf, Jawad
    IEEE ACCESS, 2024, 12 : 113099 - 113112
  • [7] Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks
    Al Sawafi, Yahya
    Touzene, Abderezak
    Hedjam, Rachid
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [8] Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Chelloug, Samia Allaoua
    Awadallah, Mohammed A.
    Al-Betar, Mohammed Azmi
    Al-qaness, Mohammed A. A.
    Forestiero, Agostino
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [9] IoT-based intrusion detection system using convolution neural networks
    Aljumah, Abdullah
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 19
  • [10] A Stratified IoT Deep Learning based Intrusion Detection System
    Idrissi, Idriss
    Azizi, Mostafa
    Moussaoui, Omar
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 808 - 815