Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study

被引:0
作者
Otto, Philipp [1 ]
Moro, Alessandro Fusta [2 ]
Rodeschini, Jacopo [2 ]
Shaboviq, Qendrim [3 ]
Ignaccolo, Rosaria [4 ]
Golini, Natalia [4 ]
Cameletti, Michela [2 ]
Maranzano, Paolo [5 ,6 ]
Finazzi, Francesco [2 ]
Fasso, Alessandro [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, Italy
[3] Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany
[4] Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, Italy
[5] Univ Milano Bicocca, Dept Econ Management & Stat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[6] Fdn Eni Enrico Mattei FEEM, Corso Magenta 63, I-20123 Milan, Italy
关键词
Air pollution; Geostatistics; Generalised additive mixed model; Hidden dynamic geostatistical model; Machine learning; Random forest spatiotemporal kriging; Spatiotemporal process; MAXIMUM-LIKELIHOOD-ESTIMATION; RANDOM-FOREST; AIR-QUALITY; PARTICULATE MATTER; PM2.5;
D O I
10.1007/s10651-023-00589-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 79 条
[51]  
Maranzano P., 2023, J AGR BIOL ENVIR ST, V89, P1
[52]  
Maranzano P, 2023, STOCH ENV RES RISK A, V37, P3615, DOI 10.1007/s00477-023-02466-5
[53]   Estimation of Anisotropic, Time-Varying Spatial Spillovers of Fine Particulate Matter Due to Wind Direction [J].
Merk, Miryam S. ;
Otto, Philipp .
GEOGRAPHICAL ANALYSIS, 2020, 52 (02) :254-277
[54]   Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation [J].
Meyer, Hanna ;
Reudenbach, Christoph ;
Hengl, Tomislav ;
Katurji, Marwan ;
Nauss, Thomas .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 101 :1-9
[55]   Spatio-temporal DeepKriging for interpolation and probabilistic forecasting [J].
Nag, Pratik ;
Sun, Ying ;
Reich, Brian J. .
SPATIAL STATISTICS, 2023, 57
[56]  
Najafabadi AM., 2020, INT J ENV HLTH ENG, V9, P1
[57]   Improved prediction for a spatio-temporal model [J].
Nowak, Gen ;
Welsh, A. H. .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (04) :631-648
[58]  
Otto P., 2023, Econometrics and Statistics, DOI [10.1016/j.ecosta.2023.11.002, DOI 10.1016/J.ECOSTA.2023.11.002]
[59]   Statistical analysis of beach profiles - A spatiotemporal functional approach [J].
Otto, Philipp ;
Piter, Andreas ;
Gijsman, Rik .
COASTAL ENGINEERING, 2021, 170
[60]  
Patelli L, 2023, ARXIV