Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study

被引:0
作者
Otto, Philipp [1 ]
Moro, Alessandro Fusta [2 ]
Rodeschini, Jacopo [2 ]
Shaboviq, Qendrim [3 ]
Ignaccolo, Rosaria [4 ]
Golini, Natalia [4 ]
Cameletti, Michela [2 ]
Maranzano, Paolo [5 ,6 ]
Finazzi, Francesco [2 ]
Fasso, Alessandro [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, Italy
[3] Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany
[4] Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, Italy
[5] Univ Milano Bicocca, Dept Econ Management & Stat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[6] Fdn Eni Enrico Mattei FEEM, Corso Magenta 63, I-20123 Milan, Italy
关键词
Air pollution; Geostatistics; Generalised additive mixed model; Hidden dynamic geostatistical model; Machine learning; Random forest spatiotemporal kriging; Spatiotemporal process; MAXIMUM-LIKELIHOOD-ESTIMATION; RANDOM-FOREST; AIR-QUALITY; PARTICULATE MATTER; PM2.5;
D O I
10.1007/s10651-023-00589-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 79 条
[1]   The cave of shadows: Addressing the human factor with generalized additive mixed models [J].
Baayen, Harald ;
Vasishth, Shravan ;
Kliegl, Reinhold ;
Bates, Douglas .
JOURNAL OF MEMORY AND LANGUAGE, 2017, 94 :206-234
[2]   Novel hybrid extreme learning machine and multi-objective optimization algorithm for air pollution prediction [J].
Bai, Lu ;
Liu, Zhi ;
Wang, Jianzhou .
APPLIED MATHEMATICAL MODELLING, 2022, 106 :177-198
[3]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[4]   A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration [J].
Berrocal, Veronica J. ;
Guan, Yawen ;
Muyskens, Amanda ;
Wang, Haoyu ;
Reich, Brian J. ;
Mulholland, James A. ;
Chang, Howard H. .
ATMOSPHERIC ENVIRONMENT, 2020, 222
[5]   Modeling the Short-Term Effect of Traffic and Meteorology on Air Pollution in Turin with Generalized Additive Models [J].
Bertaccini, Pancrazio ;
Dukic, Vanja ;
Ignaccolo, Rosaria .
ADVANCES IN METEOROLOGY, 2012, 2012
[6]  
Bonas M, 2021, ARXIV
[7]   Report Quality of Generalized Linear Mixed Models in Psychology: A Systematic Review [J].
Bono, Roser ;
Alarcon, Rafael ;
Blanca, Maria J. .
FRONTIERS IN PSYCHOLOGY, 2021, 12
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy [J].
Calculli, Crescenza ;
Fasso, Alessandro ;
Finazzi, Francesco ;
Pollice, Alessio ;
Turnone, Annarita .
ENVIRONMETRICS, 2015, 26 (06) :406-417
[10]   Spatio-temporal modeling of particulate matter concentration through the SPDE approach [J].
Cameletti, Michela ;
Lindgren, Finn ;
Simpson, Daniel ;
Rue, Havard .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) :109-131