Artificial neural networks for predicting optical conversion efficiency in luminescent solar concentrators

被引:10
作者
Andre, P. S. [1 ,2 ]
Dias, L. M. S. [1 ,2 ,3 ,4 ]
Correia, S. F. H. [5 ,6 ]
Neto, A. N. Carneiro [3 ,4 ]
Ferreira, R. A. S. [3 ,4 ]
机构
[1] Univ Lisbon, Inst Telecomunicacoes, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Telecomunicacoes, Inst Super Tecn, P-1049001 Lisbon, Portugal
[3] Univ Aveiro, Aveiro Inst Mat, Dept Phys, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, Aveiro Inst Mat, CICECO, P-3810193 Aveiro, Portugal
[5] Inst Telecomunicacoes, P-3810193 Aveiro, Portugal
[6] Univ Aveiro, P-3810193 Aveiro, Portugal
关键词
Artificial Neural Networks (ANN); Luminescent Solar Concentrator (LSC); Optical conversion efficiency; ENERGY; CELL;
D O I
10.1016/j.solener.2023.112290
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing light-harvesting materials able to shape the sunlight to cope with the absorption region of photo-voltaic (PV) cells presents an opportunity for the utilization of spectral converters like the luminescent solar concentrators (LSCs). This study explores the use of artificial neural networks (ANNs) to predict the optical conversion efficiency of spectral converters, based on the material properties employed in their production, without the need for expensive and time-consuming experimental testing. To predict efficiency as a function of materials and manufacturing processes, ANNs were trained using data from previously documented physical implementations. The findings indicate that ANNs, having 97 and 19 neurons in the hidden layers, provide accurate efficiency predictions, making them a valuable tool for designing and optimizing spectral converting systems. The proposed model was validated and got a mean square error in the order of 10-5 for the optical conversion efficiency. The trained ANN introduced a novel methodology for predicting the optical efficiency of spectral converters, opening the door to the application of machine learning as a decision-making tool for ma-terial design, and eliminating the necessity for physical device implementations.
引用
收藏
页数:8
相关论文
共 52 条
  • [11] Dwivedi R., 2023, Statistical Modeling in Machine Learning, P227, DOI [10.1016/B978-0-323-91776-6.00005-1, DOI 10.1016/B978-0-323-91776-6.00005-1]
  • [12] A comprehensive dataset of photonic features on spectral converters for energy harvesting
    Ferreira, Rute
    Correia, Sandra
    Georgieva, Petia
    Fu, Lianshe
    Antunes, Mario
    Andre, Paulo
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [13] Spectral converters for photovoltaics - What's ahead
    Ferreira, Rute A. S.
    Correia, Sandra F. H.
    Monguzzi, Angelo
    Liu, Xiaogang
    Meinardi, Francesco
    [J]. MATERIALS TODAY, 2020, 33 : 105 - 121
  • [14] Transparent Luminescent Solar Concentrators Using Ln3+-Based Ionosilicas Towards Photovoltaic Windows
    Frias, Ana R.
    Cardoso, Marita A.
    Bastos, Ana R. N.
    Correia, Sandra F. H.
    Andre, Paulo S.
    Carlos, Luis D.
    Bermudez, Veronica de Zea
    Ferreira, Rute A. S.
    [J]. ENERGIES, 2019, 12 (03)
  • [15] Neural network modeling and simulation of the synthesis of CuInS2/ZnS quantum dots
    Fu, Min
    Mrziglod, Thomas
    Luan, Weiling
    Tu, Shan-Tung
    Mleczko, Leslaw
    [J]. ENGINEERING REPORTS, 2020, 2 (02)
  • [16] Free Radical-Resistant Carbon Dots for Bulky Luminescent Solar Concentrators with High Optical Efficiency
    Gao, Lianping
    Wang, Chunlei
    Xu, Shuhong
    Xia, Pengfei
    Liu, Fan
    Sun, Hongcan
    Wang, Zhuyuan
    Lu, Changgui
    Cui, Yiping
    [J]. ACS APPLIED NANO MATERIALS, 2022, 5 (06) : 7850 - 7857
  • [17] Engineering high-emissive silicon-doped carbon nanodots towards efficient large-area luminescent solar concentrators
    Gong, Xiao
    Zheng, Shuyang
    Zhao, Xiujian
    Vomiero, Alberto
    [J]. NANO ENERGY, 2022, 101
  • [18] Optimizing luminescent solar concentrator design
    Hernandez-Noyola, Hermilo
    Potterveld, David H.
    Holt, Roy J.
    Darling, Seth B.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5798 - 5802
  • [19] Hu Yiwen, 2023, APL Machine Learning, DOI 10.1063/5.0134317
  • [20] Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    Jaeger, H
    Haas, H
    [J]. SCIENCE, 2004, 304 (5667) : 78 - 80