Preoperative CT Radiomics Nomogram for Predicting Microvascular Invasion in Stage I Non-Small Cell Lung Cancer

被引:5
作者
Deng, Lin [1 ,2 ]
Tang, Han Zhou [1 ,2 ]
Luo, Ying Wei [3 ]
Feng, Feng [4 ]
Wu, Jing Yan [1 ,2 ]
Li, Qiong [3 ]
Qiang, Jin Wei [1 ,2 ]
机构
[1] Fudan Univ, Jinshan Hosp, Dept Radiol, Shanghai 201508, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Shanghai, Peoples R China
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, State Key Lab Oncol South China,Canc Hosp, Guangzhou, Peoples R China
[4] Nantong Univ, Dept Radiol, Affiliated Tumor Hosp, Nantong, Peoples R China
关键词
microvascular invasion; nomogram; radiomics; stage I non-small cell lung cancer; VESSEL INVASION; LYMPHOVASCULAR INVASION; VASCULAR INVASION; CLASSIFICATION; RECURRENCE; SYSTEM; IMPACT; RISK;
D O I
10.1016/j.acra.2023.05.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: This study aims to develop and validate a nomogram integrating clinical-CT and radiomic features for preoperative prediction of microvascular invasion (MVI) in patients with stage I non-small cell lung cancer (NSCLC). Materials and Metkods: This retrospective study analyzed 188 cases of stage I NSCLC (63 MVI positives and 125 negatives), which were randomly assigned to training (n = 133) and validation cohorts (n = 55) at a ratio of 7:3. Preoperative non-contrast and contrastenhanced CT (CECT) images were used to analyze computed tomography (CT) features and extract radiomics features. The student's ttest, the Mann-Whitney-U test, the Pearson correlation, the least absolute shrinkage and selection operator, and multivariable logistic analysis were used to select the significant CT and radiomics features. Multivariable logistic regression analysis was performed to build the clinical-CT, radiomics, and integrated models. The predictive performances were evaluated through the receiver operating characteristic curve and compared with the DeLong test. The integrated nomogram was analyzed regarding discrimination, calibration, and clinical significance. Results: The rad-score was developed with one shape and four textural features. The integrated nomogram incorporating radiomics score, spiculation, and the number of tumor-related vessels (TVN) demonstrated better predictive efficacy than the radiomics and clinical-CT models in the training cohort (area under the curve [AUC], 0.893 vs 0.853 and 0.828, and p = 0.043 and 0.027, respectively) and validation cohort (AUC, 0.887 vs 0.878 and 0.786, and p = 0.761 and 0.043, respectively). The nomogram also demonstrated good calibration and clinical usefulness. Conclusion: The radiomics nomogram integrating the radiomics with clinical-CT features demonstrated good performance in predicting MVI status in stage I NSCLC. The nomogram may be a useful tool for physicians in improving personalized management of stage I NSCLC.
引用
收藏
页码:46 / 57
页数:12
相关论文
共 38 条
[1]   Blood and lymphatic vessels contribute to the impact of the immune microenvironment on clinical outcome in non-small-cell lung cancer [J].
Armani, Giovanna ;
Madeddu, Denise ;
Mazzaschi, Giulia ;
Bocchialini, Giovanni ;
Sogni, Francesco ;
Frati, Caterina ;
Lorusso, Bruno ;
Falco, Angela ;
Lagrasta, Costanza Annamaria ;
Cavalli, Stefano ;
Mangiaracina, Chiara ;
Vilella, Rocchina ;
Becchi, Gabriella ;
Gnetti, Letizia ;
Corradini, Emilia ;
Quaini, Eugenio ;
Urbanek, Konrad ;
Goldoni, Matteo ;
Carbognani, Paolo ;
Ampollini, Luca ;
Quaini, Federico .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2018, 53 (06) :1205-1213
[2]   Sublobar Resection in Stage IA Non-Small Cell Lung Cancer: Role of Preoperative CT Features in Predicting Pathologic Lymphovascular Invasion and Postoperative Recurrence [J].
Choe, Jooae ;
Kim, Mi Young ;
Yun, Jae Kwang ;
Lee, Geun Dong ;
Kim, Yong-Hee ;
Choi, Sehoon ;
Kim, Dong Kwan .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 217 (04) :871-881
[3]   Tumor heterogeneity estimation for radiomics in cancer [J].
Eloyan, Ani ;
Yue, Mun Sang ;
Khachatryan, Davit .
STATISTICS IN MEDICINE, 2020, 39 (30) :4704-4723
[4]   Non-Small Cell Lung Cancer, Version 3.2022 [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
DeCamp, Malcolm ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Grotz, Travis E. ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Lin, Jules ;
Loo, Billy W. ;
Lovly, Christine M. ;
Maldonado, Fabien ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Pacheco, Jose M. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Riess, Jonathan ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Tanvetyanon, Tawee ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Yau, Edwin ;
Gregory, Kristina ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (05) :497-530
[5]   Non-Small Cell Lung Cancer, Version 2.2021 Featured Updates to the NCCN Guidelines [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Hennon, Mark ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Leal, Ticiana A. ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Lovly, Christine M. ;
Martins, Renato G. ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Gregory, Kristina M. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :254-266
[6]   The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer [J].
Goldstraw, Peter ;
Chansky, Kari ;
Crowley, John ;
Rami-Porta, Ramon ;
Asamura, Hisao ;
Eberhardt, Wilfried E. E. ;
Nicholson, Andrew G. ;
Groome, Patti ;
Mitchell, Alan ;
Bolejack, Vanessa .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (01) :39-51
[7]   Radiomics-based predictive risk score: A scoring system for preoperatively predicting risk of lymph node metastasis in patients with resectable non-small cell lung cancer [J].
He, Lan ;
Huang, Yanqi ;
Yan, Lixu ;
Zheng, Junhui ;
Liang, Changhong ;
Liu, Zaiyi .
CHINESE JOURNAL OF CANCER RESEARCH, 2019, 31 (04) :641-+
[8]   Comparison between CT tumor size and pathological tumor size in frozen section examinations of lung adenocarcinoma [J].
Isaka, Tetsuya ;
Yokose, Tomoyuki ;
Ito, Hiroyuki ;
Imamura, Naoko ;
Watanabe, Masato ;
Imai, Kentaro ;
Nishii, Teppei ;
Woo, Tetsukan ;
Yamada, Kouzo ;
Nakayama, Haruhiko ;
Masuda, Munetaka .
LUNG CANCER, 2014, 85 (01) :40-46
[9]   Cancer statistics, 2007 [J].
Jemal, Ahmedin ;
Siegel, Rebecca ;
Ward, Elizabeth ;
Murray, Taylor ;
Xu, Jiaquan ;
Thun, Michael J. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2007, 57 (01) :43-66
[10]   MRI Based Radiomics Approach With Deep Learning for Prediction of Vessel Invasion in Early-Stage Cervical Cancer [J].
Jiang, Xiran ;
Li, Jiaxin ;
Kan, Yangyang ;
Yu, Tao ;
Chang, Shijie ;
Sha, Xianzheng ;
Zheng, Hairong ;
Luo, Yahong ;
Wang, Shanshan .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (03) :995-1002