A modular and scalable system for electromagnetic compatibility testing of integrated circuits

被引:0
|
作者
Kircher, Daniel [1 ]
Profanter, Simon [1 ]
Deutschmann, Bernd [1 ]
机构
[1] Graz Univ Technol, Inst Elect IFE, Inffeldgasse 12, A-8010 Graz, Austria
来源
ELEKTROTECHNIK UND INFORMATIONSTECHNIK | 2024年 / 141卷 / 01期
关键词
Integrated circuit (IC); Electromagnetic compatibility (EMC); Modular test system; Radio frequency (RF); Reusable; Integrierte Schaltungen (IC); Elektromagnetische Vertraglichkeit (EMV); Modulares Testsystem; Hochfrequenz (HF); Wiederverwendbar;
D O I
10.1007/s00502-023-01199-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To bring automotive integrated circuits (ICs) to market, manufacturers must subject their products to numerous electromagnetic compatibility (EMC) tests such as electromagnetic immunity and emission tests, or electrostatic discharge (ESD) tests. These tests need EMC test boards that meet the requirements of the specific standards. However, the current need to increase the frequency range of EMC tests poses a challenge in designing standard-compliant test boards. In this paper, we address this issue by introducing a modular and reusable IC level EMC test system. We demonstrate the system's effectiveness with an example of two frequently used and conducted EMC tests: the direct power injection (DPI) immunity test and the 150 omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$150\,\mathrm{\Omega}$$\end{document} electromagnetic emission measurement. The two test setups are constructed and validated using the presented modules. It is shown how the frequency range can be expanded while minimizing costs and design efforts for the EMC test board design. Um integrierte Schaltungen (ICs) fur Kraftfahrzeuge auf den Markt bringen zu konnen, mussen die Hersteller ihre Produkte zahlreichen Tests zur elektromagnetischen Vertraglichkeit (EMV) unterziehen, wie z. B. Tests zur elektromagnetischen Immunitat und Storaussendung oder Tests zur elektrostatischen Entladung (ESD). Fur diese Tests werden EMV-Testboards benotigt, die den Anforderungen der spezifischen Normen entsprechen. Die Erweiterung des Frequenzbereichs fur EMV-Tests stellt eine Herausforderung fur die Entwicklung normgerechter Testboards dar. In diesem Beitrag wird dieses Problem durch die Einfuhrung eines modularen und wiederverwendbaren EMV-Testsystems auf IC-Ebene gelost. Wir demonstrieren die Performance des Systems am Beispiel von zwei haufig verwendeten EMV-Tests: dem Direct Power Injection(DPI)-Storfestigkeitstest und der 150 omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{\Omega}}$$\end{document}-Messung der elektromagnetischen Storaussendung. Beide Testaufbauten werden mit den vorgestellten Modulen aufgebaut und validiert. Es wird gezeigt, wie der Frequenzbereich bei gleichzeitiger Minimierung der Kosten und des Entwicklungsaufwands fur die EMV-Testplatine erweitert werden kann.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 50 条
  • [31] Electromagnetic Compatibility Implantable Pacemaker Testing
    Hajovsky, Radovan
    Penhaker, Marek
    Capek, Ondrej
    Cernohorsky, Jindrich
    Skapa, Jan
    Korpas, David
    KNOWLEDGE IN TELECOMMUNICATION TECHNOLOGIES AND OPTICS 2010 (KTTO 2010), 2010, : 176 - 179
  • [32] On-chip transient detection circuit for system-level ESD protection in CMOS integrated circuits to meet electromagnetic compatibility regulation
    Ker, Ming-Dou
    Yen, Cheng-Cheng
    Shih, Pi-Chia
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2008, 50 (01) : 13 - 21
  • [33] Electromagnetic Compatibility Designs for Electronic Circuits in Electric Vehicles
    Weng, Wei-Chung
    Ye, Hong-Chyuan
    2016 IEEE 5TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2016), 2016, : 225 - 226
  • [34] Electromagnetic Compatibility Design of Instrumentation Amplifiers Application Circuits
    Gao, Guan-wang
    Su, Xiu-ping
    Wang, Yan-peng
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, MACHINERY AND MATERIALS (IIMM 2015), 2015, : 317 - 321
  • [35] Electromagnetic Compatibility of Track Circuits with Parallel Traction Network
    Havryliuk, Volodymyr
    Nibaruta, Regis
    Muhammad, Jaseel K. A.
    2022 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2022), 2022, : 629 - 634
  • [36] Electromagnetic Models of Integrated Circuits with Coupled Magnetic Circuits
    Ioan, Daniel
    Ciuprina, Gabriela
    Dita, Cosmin-Bogdan
    Andrei, Mihail-Iulian
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 768 - 771
  • [37] LICAT SYSTEM FOR AUTOMATIC TESTING OF LINEAR INTEGRATED-CIRCUITS
    TASSINARI, V
    CEREDA, V
    ALTA FREQUENZA, 1981, 50 (05): : 279 - 283
  • [38] Electromagnetic Compatibility for System Engineers
    Shapira, Joseph
    IETE TECHNICAL REVIEW, 2011, 28 (01) : 70 - 77
  • [39] Scalable Networks of Neuromorphic Photonic Integrated Circuits
    Xu, Lei
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Bilodeau, Simon
    Tait, Alexander
    Shastri, Bhavin J.
    Prucnal, Paul R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (06)
  • [40] Implantable cardiac pacemaker electromagnetic compatibility testing in a novel security system simulator
    Kainz, W
    Casamento, JP
    Ruggera, PS
    Chan, DD
    Witters, DM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (03) : 520 - 530