A large-deviation principle for birth-death processes with a linear rate of downward jumps

被引:1
作者
Logachov, Artem [1 ,2 ,3 ]
Suhov, Yuri [4 ]
Vvedenskaya, Nikita [5 ]
Yambartsev, Anatoly [6 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova str, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Pr K Marksa 20, Novosibirsk 630073, Russia
[3] Sobolev Inst Math, 4 Koptyugaave, Novosibirsk 630090, Russia
[4] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[5] RAS, Kharkevich Inst Informat Transmiss Problems, Bolshoy Karetnyi Per 19, Moscow 127051, Russia
[6] Univ Sao Paulo, Inst Math & Stat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
关键词
Large-deviation principle; local large-deviation principle; birth-death processes; rate functional; INHOMOGENEOUS BIRTH;
D O I
10.1017/jpr.2023.75
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Birth-death processes form a natural class where ideas and results on large deviations can be tested. We derive a large-deviation principle under an assumption that the rate of jump down (death) grows asymptotically linearly with the population size, while the rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under various forms of scaling of the underlying process and the corresponding normalization of the logarithm of the large-deviation probabilities. The results show interesting features of dependence of the rate functional upon the parameters of the process and the forms of scaling and normalization.
引用
收藏
页码:781 / 801
页数:21
相关论文
共 34 条
  • [21] Puhalskii A.A., 1991, P BAK C HON YU V PRO, V1, P198, DOI [10.1515/9783112313626-019, DOI 10.1515/9783112313626-019]
  • [22] RIESZ F., 1990, Functional Analysis
  • [23] Robert P, 2003, STOCHASTIC NETWORKS
  • [24] An Energy-Efficient Scheme for Cloud Resource Provisioning Based on CloudSim
    Shi, Yuxiang
    Jiang, Xiaohong
    Ye, Kejiang
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2011, : 595 - 599
  • [25] Stollenwerk N., 2011, Population Biology and Criticality: From Critical Birth-Death Processes to Self-Organized Criticality in Mutation Pathogen Systems, DOI 10.1142/p645
  • [26] Stroock D. W., 1984, An Introduction to the Theory of Large Deviations
  • [27] Stuhl I., 2015, LECT NOETS COMP SCI, V10684, P309
  • [28] Stuhl I., 2016, 7 EUR C MATH
  • [29] Suhov Y., 2015, PREPRINT
  • [30] Solutions of some quadratic and quartic birth and death processes and related orthogonal polynomials
    Valent, G
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) : 103 - 127