A large-deviation principle for birth-death processes with a linear rate of downward jumps

被引:1
作者
Logachov, Artem [1 ,2 ,3 ]
Suhov, Yuri [4 ]
Vvedenskaya, Nikita [5 ]
Yambartsev, Anatoly [6 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova str, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Pr K Marksa 20, Novosibirsk 630073, Russia
[3] Sobolev Inst Math, 4 Koptyugaave, Novosibirsk 630090, Russia
[4] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[5] RAS, Kharkevich Inst Informat Transmiss Problems, Bolshoy Karetnyi Per 19, Moscow 127051, Russia
[6] Univ Sao Paulo, Inst Math & Stat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
关键词
Large-deviation principle; local large-deviation principle; birth-death processes; rate functional; INHOMOGENEOUS BIRTH;
D O I
10.1017/jpr.2023.75
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Birth-death processes form a natural class where ideas and results on large deviations can be tested. We derive a large-deviation principle under an assumption that the rate of jump down (death) grows asymptotically linearly with the population size, while the rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under various forms of scaling of the underlying process and the corresponding normalization of the logarithm of the large-deviation probabilities. The results show interesting features of dependence of the rate functional upon the parameters of the process and the forms of scaling and normalization.
引用
收藏
页码:781 / 801
页数:21
相关论文
共 34 条
  • [11] Weighted entropy and optimal portfolios for risk-averse Kelly investments
    Kelbert, M.
    Stuhl, I.
    Suhov, Y.
    [J]. AEQUATIONES MATHEMATICAE, 2018, 92 (01) : 165 - 200
  • [12] BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF CARCINOGENESIS
    KENDALL, DG
    [J]. BIOMETRIKA, 1960, 47 (1-2) : 13 - 21
  • [13] KURTZ T. G., 2006, Mathematical Surveys and Monographs, V131, DOI [10.1090/surv/131, DOI 10.1090/SURV/131]
  • [14] A REMARK ON NORMALIZATIONS IN A LOCAL LARGE DEVIATIONS PRINCIPLE FOR INHOMOGENEOUS BIRTH - AND - DEATH PROCESS
    Logachov, A., V
    Suhov, Y. M.
    Vvedenskaya, N. D.
    Yambartsev, A. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1258 - 1269
  • [15] LARGE DEVIATIONS FOR PROCESSES WITH INDEPENDENT INCREMENTS
    LYNCH, J
    SETHURAMAN, J
    [J]. ANNALS OF PROBABILITY, 1987, 15 (02) : 610 - 627
  • [16] Mazel A., 2014, Journal of Statistical Mechanics: Theory and Experiment, V2014, DOI 10.1088/1742-5468/2014/8/P08010
  • [17] Large deviations for excursions of non-homogeneous Markov processes
    Mogulskii, A.
    Pechersky, E.
    Yambartsev, A.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 8
  • [18] Mogulskii AA., 2017, Sib. Adv. Math, V3, P160, DOI [10.3103/S1055134417030026, DOI 10.3103/S1055134417030026]
  • [19] Natanson I. P., 2016, Theory of Functions of a Real Variable
  • [20] Biological applications of the theory of birth-and-death processes
    Novozhilov, Artem S.
    Karev, Georgy P.
    Koonin, Eugene V.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2006, 7 (01) : 70 - 85