Strong Solvent and Dual Lithium Salts Enable Fast-Charging Lithium-Ion Batteries Operating from-78 to 60 °C

被引:91
作者
Zhao, Yumeng [1 ]
Hu, Zhenglin [1 ]
Zhao, Zhengfei [1 ]
Chen, Xinlian [2 ]
Zhang, Shu [3 ]
Gao, Jun [3 ,4 ]
Luo, Jiayan [1 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[4] Shandong Energy Inst, Inst Energy & Power Engn, Qingdao 266101, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai Key Lab Adv High Temp Mat & Precis Formi, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERFACIAL MODEL; ANTIMONY ANODE; ELECTROLYTES; INTERPHASE;
D O I
10.1021/jacs.3c08313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current lithium-ion batteries degrade under high rates and low temperatures due to the use of carbonate electrolytes with restricted Li+ conduction and sluggish Li+ desolvation. Herein, a strong solvent with dual lithium salts surmounts the thermodynamic limitations by regulating interactions among Li+ ions, anions, and solvents at the molecular level. Highly dissociated lithium bis(fluorosulfonyl)imide (LiFSI) in dimethyl sulfite (DMS) solvent with a favorable dielectric constant and melting point ensures rapid Li+ conduction while the high affinity between difluoro(oxalato)borate anions (DFOB-) and Li+ ions guarantees smooth Li+ desolvation within a wide temperature range. In the meantime, the ultrathin self-limited electrode/electrolyte interface and the electric double layer induced by DFOB- result in enhanced electrode compatibility. The as-formulated electrolyte enables stable cycles at high currents (41.3 mA cm-2) and a wide temperature range from -78 to 60 degrees C. The 1 Ah graphite||LiCoO2 (2 mAh cm(-2)) pouch cell achieves 80% reversible capacity at 2 C rate under -20 degrees C and 86% reversible capacity at 0.1 C rate under -50 degrees C. This work sheds new light on the electrolyte design with strong solvent and dual lithium salts and further facilitates the development of high-performance lithium-ion batteries operating under extreme conditions.
引用
收藏
页码:22184 / 22193
页数:10
相关论文
共 53 条
[1]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[2]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[3]   Toward wide-temperature electrolyte for lithium-ion batteries [J].
Chen, Long ;
Wu, Honglun ;
Ai, Xinping ;
Cao, Yuliang ;
Chen, Zhongxue .
BATTERY ENERGY, 2022, 1 (02)
[4]   Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes [J].
Chen, Xiang ;
Zhang, Qiang .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) :1992-2002
[5]   Enabling the Low-Temperature Cycling of NMC∥Graphite Pouch Cells with an Ester-Based Electrolyte [J].
Cho, Yoon-Gyo ;
Li, Mingqian ;
Holoubek, John ;
Li, Weikang ;
Yin, Yijie ;
Meng, Ying Shirley ;
Chen, Zheng .
ACS ENERGY LETTERS, 2021, 6 (05) :2016-2023
[6]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[7]   Challenges and advances in wide-temperature rechargeable lithium batteries [J].
Feng, Yang ;
Zhou, Limin ;
Ma, Hua ;
Wu, Zhonghan ;
Zhao, Qing ;
Li, Haixia ;
Zhang, Kai ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1711-+
[8]   Graphite as Cointercalation Electrode for Sodium-Ion Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (SEI) [J].
Goktas, Mustafa ;
Bolli, Christoph ;
Berg, Erik J. ;
Novak, Petr ;
Pollok, Kilian ;
Langenhorst, Falko ;
Roeder, Maximilian V. ;
Lenchuk, Olena ;
Mollenhauer, Doreen ;
Adelhelm, Philipp .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode [J].
Guo, Rude ;
Che, Yanxia ;
Lan, Guangyuan ;
Lan, Jianlian ;
Li, Jianhui ;
Xing, Lidan ;
Xu, K. ;
Fan, Weizhen ;
Yu, Le ;
Li, Weishan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) :38285-38293