Development of compact tokamak fusion reactor use cases to inform future transport studies

被引:5
作者
Holland, C. [1 ]
Bass, E. M. [1 ]
Orlov, D. M. [1 ]
Mcclenaghan, J. [2 ]
Lyons, B. C. [2 ]
Grierson, B. A. [2 ]
Jian, X. [2 ]
Howard, N. T. [3 ]
Rodriguez-Fernandez, P. [3 ]
机构
[1] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[2] Gen Atom, San Diego, CA 92186 USA
[3] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
plasma confinement; fusion plasma; plasma simulation; NUCLEAR-SCIENCE FACILITY; MODE DENSITY LIMIT; NEOCLASSICAL CONDUCTIVITY; BOOTSTRAP CURRENT; PHYSICS BASIS; POWER; TURBULENCE; STABILITY; ITER; ION;
D O I
10.1017/S0022377823000843
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The OMFIT STEP (Meneghini et al., Nucl. Fusion, vol. 10, 2020, p. 1088) workflow has been used to develop inductive and steady-state H-mode core plasma scenario use cases for a B-0 = 8T, R-0 = 4mmachine to help guide and inform future higher-fidelity studies of core transport and confinement in compact tokamak reactors. Both use cases are designed to produce 200MW or more of net electric power in an up-down symmetric plasma with minor radius a = 1.4m, elongation kappa = 2.0, triangularity delta = 0.5 and effective charge Z(eff) similar or equal to 2. Additional considerations based on the need for compatibility of the core with reactor-relevant power exhaust solutions and external actuators were used to guide and constrain the use case development. An extensive characterization of core transport in both scenarios is presented, the most important feature of which is the extreme sensitivity of the results to the quantitative stiffness level of the transport model used as well as the predicted critical gradients. This sensitivity is shown to arise from different levels of transport stiffness exhibited by the models, combined with the gyroBohm-normalized fluxes of the predictions being an order of magnitude larger than other H-mode plasmas. Additionally, it is shown that although heating in both plasmas is predominantly to the electrons and collisionality is low, the plasmas remain sufficiently well coupled for the ions to carry a significant fraction of the thermal transport. As neoclassical transport is negligible in these conditions, this situation inherently requires long-wavelength ion gyroradius-scale turbulence to be the dominant transport mechanism in both plasmas. These results are combined with other basic considerations to propose a simple heuristic model of transport in reactor-relevant plasmas, along with simple metrics to quantify coupling and core transport properties across burning and non-burning plasmas.
引用
收藏
页数:48
相关论文
共 149 条
  • [1] Confinement properties of L-mode plasmas in ASDEX Upgrade and full-radius predictions of the TGLF transport model
    Angioni, C.
    Gamot, T.
    Tardini, G.
    Fable, E.
    Luda, T.
    Bonanomi, N.
    Kiefer, C. K.
    Staebler, G. M.
    [J]. NUCLEAR FUSION, 2022, 62 (06)
  • [2] Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
    Angioni, C.
    Bilato, R.
    Casson, F. J.
    Fable, E.
    Mantica, P.
    Odstrcil, T.
    Valisa, M.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    [J]. NUCLEAR FUSION, 2017, 57 (02)
  • [3] Particle transport in tokamak plasmas, theory and experiment
    Angioni, C.
    Fable, E.
    Greenwald, M.
    Maslov, M.
    Peeters, A. G.
    Takenaga, H.
    Weisen, H.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [4] [Anonymous], Nucl. Fusion, V39, P2137
  • [5] [Anonymous], 1999, Nuclear Fusion, V39, P2175
  • [6] APS-DPP Community Planning Process, 2020, Tech. Rep. APS
  • [7] Rapidly-convergent flux-surface shape parameterization
    Arbon, R.
    Candy, J.
    Belli, E. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (01)
  • [8] Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes
    Bass, E. M.
    Waltz, R. E.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (12)
  • [9] Threshold power for the transition into H-mode for H, D, and He plasmas in TCV
    Behn, R.
    Labit, B.
    Duval, B. P.
    Karpushov, A.
    Martin, Y.
    Porte, L.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (02)
  • [10] Asymmetry between deuterium and tritium turbulent particle flows
    Belli, E. A.
    Candy, J.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (06)