Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning

被引:62
作者
Xie, Lifang [1 ,2 ,3 ]
Luo, Siheng [4 ,5 ]
Liu, Yangyang [1 ,2 ,3 ]
Ruan, Xuejun [1 ,2 ,3 ]
Gong, Kedong [1 ,2 ,3 ]
Ge, Qiuyue [1 ,2 ,3 ]
Li, Kejian [1 ,2 ,3 ]
Valev, Ventsislav Kolev [6 ,7 ]
Liu, Guokun [4 ,5 ]
Zhang, Liwu [1 ,2 ,3 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Atmospher Particle Pollut & Preve, Shanghai 200433, Peoples R China
[3] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[4] Xiamen Univ, Coll Environm & Ecol, Ctr Marine Environm Chem & Toxicol, State Key Lab Marine Environm Sci,Fujian Prov Key, Xiamen 361102, Peoples R China
[5] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[6] Univ Bath, Ctr Photon & Photon Mat, Bath BA2 7AY, England
[7] Univ Bath, Ctr Nanosci & Nanotechnol, Dept Phys, Bath BA2 7AY, England
基金
上海市自然科学基金; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Raman Spectroscopy; MachineLearning; Nanoplastics; Microplastics; Random Forest; PLASTIC DEBRIS; MICROPLASTICS; SPECTRA; FTIR;
D O I
10.1021/acs.est.3c03210
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study combined Raman spectroscopyand machine learningto accurately identify nanoplastics, with successful application tocomplex environmental samples. The increasing prevalence of nanoplasticsin the environmentunderscoresthe need for effective detection and monitoring techniques. Currentmethods mainly focus on microplastics, while accurate identificationof nanoplastics is challenging due to their small size and complexcomposition. In this work, we combined highly reflective substratesand machine learning to accurately identify nanoplastics using Ramanspectroscopy. Our approach established Raman spectroscopy data setsof nanoplastics, incorporated peak extraction and retention data processing,and constructed a random forest model that achieved an average accuracyof 98.8% in identifying nanoplastics. We validated our method withtap water spiked samples, achieving over 97% identification accuracy,and demonstrated the applicability of our algorithm to real-worldenvironmental samples through experiments on rainwater, detectingnanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite thechallenges of processing low-quality nanoplastic Raman spectra andcomplex environmental samples, our study demonstrated the potentialof using random forests to identify and distinguish nanoplastics fromother environmental particles. Our results suggest that the combinationof Raman spectroscopy and machine learning holds promise for developingeffective nanoplastic particle detection and monitoring strategies.
引用
收藏
页码:18203 / 18214
页数:12
相关论文
共 67 条
[1]   The Impact of Simulated Spectral Noise on Random Forest and Oblique Random Forest Classification Performance [J].
Agjee, Na'eem Hoosen ;
Mutanga, Onisimo ;
Peerbhay, Kabir ;
Ismail, Riyad .
JOURNAL OF SPECTROSCOPY, 2018, 2018
[2]   Atmospheric transport and deposition of microplastics in a remote mountain catchment [J].
Allen, Steve ;
Allen, Deonie ;
Phoenix, Vernon R. ;
Le Roux, Gael ;
Jimenez, Pilar Durantez ;
Simonneau, Anaelle ;
Binet, Stephane ;
Galop, Didier .
NATURE GEOSCIENCE, 2019, 12 (05) :339-+
[3]   Machine learning approaches in diagnosing tuberculosis through biomarkers-A systematic review [J].
Balakrishnan, Vimala ;
Kehrabi, Yousra ;
Ramanathan, Ghayathri ;
Paul, Scott Arjay ;
Tiong, Chiong Kian .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2023, 179 :16-25
[4]   Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology [J].
Baldwin, Austin K. ;
Corsi, Steven R. ;
Mason, Sherri A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (19) :10377-10385
[5]   Algorithm for optimal denoising of Raman spectra [J].
Barton, Sinead J. ;
Ward, Tomas E. ;
Hennelly, Bryan M. .
ANALYTICAL METHODS, 2018, 10 (30) :3759-3769
[6]   Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups [J].
Bertoldo Menezes, D. ;
Reyer, A. ;
Marletta, A. ;
Musso, M. .
MATERIALS RESEARCH EXPRESS, 2017, 4 (01)
[7]   Microplastics in gentoo penguins from the Antarctic region [J].
Bessa, Filipa ;
Ratcliffe, Norman ;
Otero, Vanessa ;
Sobral, Paula ;
Marques, Joao C. ;
Waluda, Claire M. ;
Trathan, Phil N. ;
Xavier, Jose C. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra-A Case Study in Microplastic Analyses [J].
Brandt, Josef ;
Mattsson, Karin ;
Hassellov, Martin .
ANALYTICAL CHEMISTRY, 2021, 93 (49) :16360-16368
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Applying confocal Raman spectroscopy and different linear multivariate analyses to sort polyethylene residues [J].
da Silva, Daniel Jose ;
Parra, Duclerc Fernandes ;
Wiebeck, Helio .
CHEMICAL ENGINEERING JOURNAL, 2021, 426