Federated Learning-Based Insulator Fault Detection for Data Privacy Preserving

被引:2
作者
Luan, Zhirong [1 ]
Lai, Yujun [1 ]
Xu, Zhicong [1 ]
Gao, Yu [1 ]
Wang, Qian [1 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
vision sensor; insulator fault detection; federated learning; privacy-preserving;
D O I
10.3390/s23125624
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Insulators are widely used in distribution network transmission lines and serve as critical components of the distribution network. The detection of insulator faults is essential to ensure the safe and stable operation of the distribution network. Traditional insulator detection methods often rely on manual identification, which is time-consuming, labor-intensive, and inaccurate. The use of vision sensors for object detection is an efficient and accurate detection method that requires minimal human intervention. Currently, there is a considerable amount of research on the application of vision sensors for insulator fault recognition in object detection. However, centralized object detection requires uploading data collected from various substations through vision sensors to a computing center, which may raise data privacy concerns and increase uncertainty and operational risks in the distribution network. Therefore, this paper proposes a privacy-preserving insulator detection method based on federated learning. An insulator fault detection dataset is constructed, and Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) models are trained within the federated learning framework for insulator fault detection. Most of the existing insulator anomaly detection methods use a centralized model training method, which has the advantage of achieving a target detection accuracy of over 90%, but the disadvantage is that the training process is prone to privacy leakage and lacks privacy protection capability. Compared with the existing insulator target detection methods, the proposed method can also achieve an insulator anomaly detection accuracy of more than 90% and provide effective privacy protection. Through experiments, we demonstrate the applicability of the federated learning framework for insulator fault detection and its ability to protect data privacy while ensuring test accuracy.
引用
收藏
页数:20
相关论文
共 44 条
  • [1] Energy performance, environmental impact and cost of a range of insulation materials
    Dickson, T.
    Pavia, S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 140
  • [2] Geyer RC, 2017, arXiv
  • [3] Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
    Guo, Chunle
    Li, Chongyi
    Guo, Jichang
    Loy, Chen Change
    Hou, Junhui
    Kwong, Sam
    Cong, Runmin
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1777 - 1786
  • [4] Hamer J., 2020, P INT C MACH LEARN, P3973
  • [5] A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection
    Han, Jiaming
    Yang, Zhong
    Zhang, Qiuyan
    Chen, Cong
    Li, Hongchen
    Lai, Shangxiang
    Hu, Guoxiong
    Xu, Changliang
    Xu, Hao
    Wang, Di
    Chen, Rui
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (10):
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Detection of Multiple Respiration Patterns Based on 1D SNN from Continuous Human Breathing Signals and the Range Classification Method for Each Respiration Pattern
    Hong, Jin-Woo
    Kim, Seong-Hoon
    Han, Gi-Tae
    [J]. SENSORS, 2023, 23 (11)
  • [8] Ioffe S., 2015, 32 INT C MACH LEARN
  • [9] Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy
    Joshi, Rahul
    Priya, G. G. Lakshmi
    Faqeerzada, Mohammad Akbar
    Bhattacharya, Tanima
    Kim, Moon Sung
    Baek, Insuck
    Cho, Byoung-Kwan
    [J]. SENSORS, 2023, 23 (11)
  • [10] Advances and Open Problems in Federated Learning
    Kairouz, Peter
    McMahan, H. Brendan
    Avent, Brendan
    Bellet, Aurelien
    Bennis, Mehdi
    Bhagoji, Arjun Nitin
    Bonawitz, Kallista
    Charles, Zachary
    Cormode, Graham
    Cummings, Rachel
    D'Oliveira, Rafael G. L.
    Eichner, Hubert
    El Rouayheb, Salim
    Evans, David
    Gardner, Josh
    Garrett, Zachary
    Gascon, Adria
    Ghazi, Badih
    Gibbons, Phillip B.
    Gruteser, Marco
    Harchaoui, Zaid
    He, Chaoyang
    He, Lie
    Huo, Zhouyuan
    Hutchinson, Ben
    Hsu, Justin
    Jaggi, Martin
    Javidi, Tara
    Joshi, Gauri
    Khodak, Mikhail
    Konecny, Jakub
    Korolova, Aleksandra
    Koushanfar, Farinaz
    Koyejo, Sanmi
    Lepoint, Tancrede
    Liu, Yang
    Mittal, Prateek
    Mohri, Mehryar
    Nock, Richard
    Ozgur, Ayfer
    Pagh, Rasmus
    Qi, Hang
    Ramage, Daniel
    Raskar, Ramesh
    Raykova, Mariana
    Song, Dawn
    Song, Weikang
    Stich, Sebastian U.
    Sun, Ziteng
    Suresh, Ananda Theertha
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2): : 1 - 210