COMPOSITE FERMIONS QED LAGRANGIAN DENSITY IN FRACTIONAL FORMULATION

被引:0
作者
Al-Oqali, Amer D. [1 ]
机构
[1] Mutah Univ, Dept Phys, Al Karak, Jordan
来源
EAST EUROPEAN JOURNAL OF PHYSICS | 2023年 / 02期
关键词
Quantum Electrodynamics; Composite Fermions; Fractional derivative; Lagrangian density; Euler-Lagrange equations; QUANTUM-FIELD THEORY; EULER-LAGRANGE; EQUATIONS; SYSTEM;
D O I
10.26565/2312-4334-2023-2-03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum electrodynamics (QED) is a highly precise and successful theory that describes the interaction between electrically charged particles and electromagnetic radiation. It is an integral part of the Standard Model of particle physics and provides a theoretical basis for explaining a wide range of physical phenomena, including the behavior of atoms, molecules, and materials. In this work, the Lagrangian density of Composite Fermions in QED has been expressed in a fractional form using the Riemann-Liouville fractional derivative. The fractional Euler-Lagrange and fractional Hamiltonian equations, derived from the fractional form of the Lagrangian density, were also obtained. When & alpha; is set to 1, the conventional mathematical equations are restored.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 23 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
Al-Oqali A.D., 2016, CAN J PURE APPL SCI, V10, P3803
[3]   Fractional formulation of Podolsky Lagrangian density [J].
Al-Oqali, Amer D. .
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2022, 9 (02) :136-141
[4]   Fractional Euler-Lagrange and fractional Hamilton equations for super symmetric classical model [J].
Baleanu, Dumitru ;
Muslih, Sami I. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (04) :379-383
[5]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[6]   Hamiltonian formulation of classical fields with fractional derivatives: revisited [J].
Diab, A. A. ;
Hijjawi, R. S. ;
Asad, J. H. ;
Khalifeh, J. M. .
MECCANICA, 2013, 48 (02) :323-330
[7]   FRACTIONAL QUANTUM HALL-EFFECT AROUND NU=3/2 - COMPOSITE FERMIONS WITH A SPIN [J].
DU, RR ;
YEH, AS ;
STORMER, HL ;
TSUI, DC ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1995, 75 (21) :3926-3929
[8]   Fractional Order Calculus: Basic Concepts and Engineering Applications [J].
Gutierrez, Ricardo Enrique ;
Rosario, Joao Mauricio ;
Machado, Jose Tenreiro .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[9]   Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations [J].
Herzallah, Mohamed A. E. ;
Baleanu, Dumitru .
NONLINEAR DYNAMICS, 2009, 58 (1-2) :385-391
[10]  
Hilfer R., 2000, APPL FRACTIONAL CALC, DOI [10.1142/3779, DOI 10.1142/3779]