Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells

被引:15
作者
Meyer, Quentin [1 ]
Liu, Shiyang [1 ]
Ching, Karin [1 ]
Da Wang, Ying [2 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Sch Minerals & Energy Resources Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Proton exchange membrane fuel cell; Triple-phase boundary; Electrochemical impedance spectroscopy; Zero-phase; OHMIC RESISTANCE; WATER; NAFION; CORROSION; IMPACT;
D O I
10.1016/j.jpowsour.2022.232539
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reactions in proton exchange membrane fuel cells take place at the interface between the proton conductive electrolyte, gases, and catalyst active site, or the so-called triple-phase boundary. The triple -phase boundary area can increase through catalyst layer designs and hydrogen fuel cell operations. While catalyst layers are commonly characterized using physical methods, the impact of hydrogen fuel cell operations on triple-phase boundaries is significantly more challenging to analyze, with operando electrochemical charac-terizations currently lacking the necessary accuracy and sensitivity to capture these evolutions. Herein, we introduce an innovative approach to monitoring triple-phase boundary evolutions by simultaneously capturing the ohmic resistance and double-layer capacitance in transient operations using high-frequency zero-phase impedance spectroscopy. The operando catalyst layer utilization quickly reduces through-out dehydration, flooding, excessive load increase, and cell degradations. This approach precisely pinpoints how proton transport, electron transport and oxygen diffusion can altogether reduce the triple-phase boundary area. This new analysis, conducted using commercial materials, unravels the evolutions of the active site and electrolyte interactions throughout the hydrogen fuel cell operations and lifecycle, evidencing a rapid evolution in the triple-phase boundary area throughout the hydrogen fuel cell operations.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
Binti Mustaffa I., 2017, 2017 INT C ROBOTICS, P1, DOI [10.1109/ICORAS.2017.8308040, DOI 10.1109/ICORAS.2017.8308040]
[2]   Neutron imaging of fuel cells - Recent trends and future prospects [J].
Boillat, P. ;
Lehmann, E. H. ;
Trtik, P. ;
Cochet, M. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 5 (01) :3-10
[3]   Electrical test methods for on-line fuel cell ohmic resistance measurement [J].
Cooper, K. R. ;
Smith, M. .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :1088-1095
[4]   New roads and challenges for fuel cells in heavy-duty transportation [J].
Cullen, David A. ;
Neyerlin, K. C. ;
Ahluwalia, Rajesh K. ;
Mukundan, Rangachary ;
More, Karren L. ;
Borup, Rodney L. ;
Weber, Adam Z. ;
Myers, Deborah J. ;
Kusoglu, Ahmet .
NATURE ENERGY, 2021, 6 (05) :462-474
[5]   Effects of PEMFC Operational History under Dry/Wet Conditions on Additional Voltage Losses due to Ionomer Migration [J].
Du, Fengmin ;
Dao, Tuan Anh ;
Peitl, Pia Valentina Josephine ;
Bauer, Andreas ;
Preuss, Kathrin ;
Bonastre, Alex Martinez ;
Sharman, Jonathan ;
Spikes, Geoffrey ;
Perchthaler, Markus ;
Schmidt, Thomas J. ;
Orfanidi, Alin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
[6]   Benchmarking Fuel Cell Electrocatalysts Using Gas Diffusion Electrodes: Inter-lab Comparison and Best Practices [J].
Ehelebe, Konrad ;
Schmitt, Nicolai ;
Sievers, Gustav ;
Jensen, Anders W. ;
Hrnji, Armin ;
Jimenez, Pablo Collantes ;
Kaiser, Pascal ;
Geuss, Moritz ;
Ku, Yu-Ping ;
Jovanovic, Primoz ;
Mayrhofer, Karl J. J. ;
Etzold, Bastian ;
Hodnik, Nejc ;
Escudero-Escribano, Maria ;
Arenz, Matthias ;
Cherevko, Serhiy .
ACS ENERGY LETTERS, 2022, 7 (02) :816-826
[7]   Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics [J].
Engebretsen, Erik ;
Hinds, Gareth ;
Meyer, Quentin ;
Mason, Tom ;
Brightman, Edward ;
Castanheira, Luis ;
Shearing, Paul R. ;
Brett, Daniel J. L. .
JOURNAL OF POWER SOURCES, 2018, 382 :38-44
[8]   Moisture and thermal expansion properties and mechanism of interaction between ions of a Nafion-based membrane electrode assembly [J].
Feng, C. ;
He, P. F. .
RSC ADVANCES, 2017, 7 (55) :34556-34566
[9]   Model based PEM fuel cell state-of-health monitoring via ac impedance measurements [J].
Fouquet, N. ;
Doulet, C. ;
Nouillant, C. ;
Dauphin-Tanguy, G. ;
Ould-Bouamama, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :905-913
[10]  
Fuel Cells, 2016, MULTIYEAR RES DEV DE, P1