Reticular synthesis of a conductive composite derived from metal-organic framework and Mxene for the electrochemical detection of dopamine

被引:38
作者
Paul, Jose [1 ]
Kim, Jongsung [1 ]
机构
[1] Gachon Univ, Dept Chem & Biol Engn, 1342,Seongnamdaero, Seongnam 13120, South Korea
基金
新加坡国家研究基金会;
关键词
Metal-organic framework; Titanium-based MXene; Reticular chemistry; Nanocomposite; Electrochemical sensor; Dopamine; CHEMICALLY-MODIFIED ELECTRODES; NANOCOMPOSITE; POLYMERS; SENSOR; OXIDE; ACID;
D O I
10.1016/j.apsusc.2022.156103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is a great demand for the development of electrochemical sensors dealing with reagent-free detection of neurochemicals such as dopamine (DA). This study deals with the synthesis of a nanocomposite prepared from non-conductive [Zn-4(btec)(2)(H2O)(6)]n center dot 3nH(2)O (H4BTC = 1,2,4,5-benzene-tetra carboxylate) metal-organic framework (MOF) and titanium-based MXene (Ti3C2) as a conductive probe for the voltammetry detection of redoxactive dopamine (DA). The electrochemical sensor for DA was prepared with a glassy carbon electrode (GCE) which is modified with a layer of nanocomposite (MOF-Ti3C2). The modified GCE was used for the detection of DA in the presence of ascorbic acid (AA) and 5-aminovaleric acid (VA) in PBS (0.1 M, pH; 6.5). The MOF-Ti3C2-based GCE demonstrated the detection limit of 110 nM for DA sensing in a linear concentration range (90-300 nM).
引用
收藏
页数:10
相关论文
共 43 条
[1]   A dopamine electrochemical sensor based on a platinum-silver graphene nanocomposite modified electrode [J].
Anuar, Nadzirah Sofia ;
Basirun, Wan Jeffrey ;
Shalauddin, Md ;
Akhter, Shamima .
RSC ADVANCES, 2020, 10 (29) :17336-17344
[2]   One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid [J].
Aparna, T. K. ;
Sivasubramanian, R. ;
Dar, Mushtaq Ahmad .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 741 :1130-1141
[3]   An overview of the detection of serotonin and dopamine with graphene-based sensors [J].
Cernat, Andreea ;
Stefan, Geanina ;
Tertis, Mihaela ;
Cristea, Cecilia ;
Simon, Ioan .
BIOELECTROCHEMISTRY, 2020, 136
[4]   Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review [J].
Chen, Sidi ;
Yuan, Baiqing ;
Liu, Gang ;
Zhang, Daojun .
FRONTIERS IN CHEMISTRY, 2020, 8
[5]   Photo-enhanced upcycling H2O2 into hydroxyl radicals by IR780-embedded Fe3O4@MIL-100 for intense nanocatalytic tumor therapy [J].
Cun, Ju-E ;
Pan, Yang ;
Zhang, Zhuangzhuang ;
Lu, Yao ;
Li, Junhua ;
Pan, Qingqing ;
Gao, Wenxia ;
Luo, Kui ;
He, Bin ;
Pu, Yuji .
BIOMATERIALS, 2022, 287
[6]   Copper-based metal-organic frameworks for biomedical applications [J].
Cun, Ju-E ;
Fan, Xi ;
Pan, Qingqing ;
Gao, Wenxia ;
Luo, Kui ;
He, Bin ;
Pu, Yuji .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2022, 305
[7]   An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids [J].
del Rio, Jonathan Sabate ;
Henry, Olivier Y. F. ;
Jolly, Pawan ;
Ingber, Donald E. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1143-+
[8]   A Practical Beginner's Guide to Cyclic Voltammetry [J].
Elgrishi, Noemie ;
Rountree, Kelley J. ;
McCarthy, Brian D. ;
Rountree, Eric S. ;
Eisenhart, Thomas T. ;
Dempsey, Jillian L. .
JOURNAL OF CHEMICAL EDUCATION, 2018, 95 (02) :197-206
[9]   Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors [J].
Fazio, Enza ;
Spadaro, Salvatore ;
Corsaro, Carmelo ;
Neri, Giulia ;
Leonardi, Salvatore Gianluca ;
Neri, Fortunato ;
Lavanya, Nehru ;
Sekar, Chinnathambi ;
Donato, Nicola ;
Neri, Giovanni .
SENSORS, 2021, 21 (07)
[10]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+