Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery

被引:45
作者
Cao, Yufang [1 ,2 ,3 ,4 ]
Tang, Xiaohui [2 ]
Li, Linge [1 ,2 ]
Tu, Haifeng [1 ,2 ]
Hu, Yuzhen [1 ,2 ]
Yu, Yingying [2 ]
Cheng, Shuang [1 ,2 ]
Lin, Hongzhen [1 ,2 ]
Zhang, Liwen [2 ,3 ,4 ]
Di, Jiangtao [1 ,2 ,3 ,4 ]
Zhang, Yongyi [1 ,2 ,3 ,4 ]
Liu, Meinan [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Sch Nanotech & Nanobion, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Adv Mat Div, Key Lab Multifunct Nanomat & Smart Syst, Suzhou 215123, Peoples R China
[3] Jiangxi Inst Nanotechnol, Div Nanomat, Nanchang 330200, Jiangxi, Peoples R China
[4] Jiangxi Inst Nanotechnol, Jiangxi Key Lab Carbonene Mat, Nanchang 330200, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
solvation structure; Zn2+ mobility; dendrite suppression; sucrose; ION; ELECTROLYTE; ANODE; STRATEGIES; SAFE; LIFE;
D O I
10.1007/s12274-022-4726-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc battery has been regarded as one of the most promising energy storage systems due to its low cost and environmental benignity. However, the safety concern on Zn anodes caused by uncontrolled Zn dendrite growth in aqueous electrolyte hinders their application. Herein, sucrose with multi-hydroxyl groups has been introduced into aqueous electrolyte to modify Zn2+ solvation environment and create a protection layer on Zn anode, thus effectively retarding the growth of zinc dendrites. Atomistic simulations and experiments confirm that sucrose molecules can enter into the solvation sheath of Zn2+, and the as-formed unique solvation structure enhances the mobility of Zn2+. Such fast Zn2+ kinetics in sucrose-modified electrolyte can successfully suppress the dendrite growth. With this sucrose-modified aqueous electrolyte, Zn/Zn symmetric cells present more stable cycle performance than those using pure aqueous electrolyte; Zn/C cells also deliver an impressive higher energy density of 129.7 Wh center dot kg(-1) and improved stability, suggesting a great potential application of sucrose-modified electrolytes for future Zn batteries.
引用
收藏
页码:3839 / 3846
页数:8
相关论文
共 57 条
[1]   Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Deng, Tao ;
Li, Qin ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (43) :19292-19296
[2]   Regulating Dendrite-Free Zinc Deposition by 3D Zincopilic Nitrogen-Doped Vertical Graphene for High-Performance Flexible Zn-Ion Batteries [J].
Cao, Qinghe ;
Gao, Heng ;
Gao, Yong ;
Yang, Jie ;
Li, Chun ;
Pu, Jie ;
Du, Junjie ;
Yang, Jiayu ;
Cai, Dongming ;
Pan, Zhenghui ;
Guan, Cao ;
Huang, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (37)
[3]   Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode [J].
Cao, Yufang ;
Tang, Xiaohui ;
Liu, Meinan ;
Zhang, Yongyi ;
Yang, Tingting ;
Yang, Zhengpeng ;
Yu, Yingying ;
Li, Yong ;
Di, Jiangtao ;
Li, Qingwen .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[4]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[5]   Recent advances in energy storage mechanism of aqueous zinc-ion batteries [J].
Chen, Duo ;
Lu, Mengjie ;
Cai, Dong ;
Yang, Hang ;
Han, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :712-726
[6]   Hierarchical Micro-Nano Sheet Arrays of Nickel-Cobalt Double Hydroxides for High-Rate Ni-Zn Batteries [J].
Chen, Hao ;
Shen, Zhehong ;
Pan, Zhenghui ;
Kou, Zongkui ;
Liu, Ximeng ;
Zhang, Hong ;
Gu, Qilin ;
Guan, Cao ;
Wang, John .
ADVANCED SCIENCE, 2019, 6 (08)
[7]   Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries [J].
Cheng, Haoran ;
Sun, Qujiang ;
Li, Leilei ;
Zou, Yeguo ;
Wang, Yuqi ;
Cai, Tao ;
Zhao, Fei ;
Liu, Gang ;
Ma, Zheng ;
Wahyudi, Wandi ;
Li, Qian ;
Ming, Jun .
ACS ENERGY LETTERS, 2022, 7 (01) :490-513
[8]   A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance [J].
Deng, Xiaoyang ;
Li, Jiajun ;
Shan, Zhu ;
Sha, Junwei ;
Ma, Liying ;
Zhao, Naiqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (23) :11617-11625
[9]   Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase [J].
Di, Shengli ;
Nie, Xueyu ;
Ma, Guoqiang ;
Yuan, Wentao ;
Wang, Yuanyuan ;
Liu, Yongchang ;
Shen, Shigang ;
Zhang, Ning .
ENERGY STORAGE MATERIALS, 2021, 43 :375-382
[10]   Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors [J].
Dong, Liubing ;
Ma, Xinpei ;
Li, Yang ;
Zhao, Ling ;
Liu, Wenbao ;
Cheng, Junye ;
Xu, Chengjun ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu .
ENERGY STORAGE MATERIALS, 2018, 13 :96-102