Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing

被引:11
作者
Aslan, Cynthia [1 ]
Zolbanin, Naime Majidi [2 ,3 ]
Faraji, Fatemeh [4 ]
Jafari, Reza [5 ,6 ]
机构
[1] Tabriz Univ Med Sci, Aging Res Inst, Res Ctr Integrat Med Aging, Tabriz, Iran
[2] Urmia Univ Med Sci, Expt & Appl Pharmaceut Sci Res Ctr, Orumiyeh, Iran
[3] Urmia Univ Med Sci, Sch Pharm, Dept Pharmacol & Toxicol, Orumiyeh, Iran
[4] Iran Univ Med Sci, Inst Immunol & Infect Dis, Hazrat E Rasool Gen Hosp, Antimicrobial Resistance Res Ctr, Floor 3,Bldg 3,Niyayesh St,Sattar Khan St, Tehran 1445613131, Iran
[5] Urmia Univ Med Sci, Cellular & Mol Med Res Inst, Cellular & Mol Res Ctr, Clin Res Inst, Shafa St,Ershad Blvd,POB 1138, Orumiyeh 57147, Iran
[6] Urmia Univ Med Sci, Dept Immunol & Genet, Fac Med, Orumiyeh, Iran
关键词
CRISPR; Cas9; Exosomes; Gene therapy; MOUSE MODEL; ENGINEERING EXOSOMES; DRUG-DELIVERY; GENE MUTATION; HUMAN EMBRYOS; IN-VITRO; CRISPR/CAS9; RNA; DISEASE; CELLS;
D O I
10.1007/s12033-023-00932-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
引用
收藏
页码:3092 / 3116
页数:25
相关论文
共 183 条
[1]   Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gene Is a Risk Factor of Large-Vessel Atherosclerosis Stroke [J].
Abboud, Sherine ;
Karhunen, Pekka J. ;
Luetjohann, Dieter ;
Goebeler, Sirkka ;
Luoto, Teemu ;
Friedrichs, Silvia ;
Lehtimaki, Terho ;
Pandolfo, Massimo ;
Laaksonen, Reijo .
PLOS ONE, 2007, 2 (10)
[2]   A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish [J].
Ablain, Julien ;
Durand, Ellen M. ;
Yang, Song ;
Zhou, Yi ;
Zon, Leonard I. .
DEVELOPMENTAL CELL, 2015, 32 (06) :756-764
[3]   RNA targeting with CRISPR-Cas13 [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Essletzbichler, Patrick ;
Han, Shuo ;
Joung, Julia ;
Belanto, Joseph J. ;
Verdine, Vanessa ;
Cox, David B. T. ;
Kellner, Max J. ;
Regev, Aviv ;
Lander, Eric S. ;
Voytas, Daniel F. ;
Ting, Alice Y. ;
Zhang, Feng .
NATURE, 2017, 550 (7675) :280-+
[4]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[5]   Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer [J].
Alvarez-Fernandez, Monica ;
Sanz-Flores, Maria ;
Sanz-Castillo, Belen ;
Salazar-Roa, Maria ;
Partida, David ;
Zapatero-Solana, Elisabet ;
Ali, H. Raza ;
Manchado, Eusebio ;
Lowe, Scott ;
VanArsdale, Todd ;
Shields, David ;
Caldas, Carlos ;
Quintela-Fandino, Miguel ;
Malumbres, Marcos .
CELL DEATH AND DIFFERENTIATION, 2018, 25 (05) :828-840
[6]   FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling [J].
Arias-Fuenzalida, Jonathan ;
Jarazo, Javier ;
Qing, Xiaobing ;
Walter, Jonas ;
Gomez-Giro, Gemma ;
Nickels, Sarah Louise ;
Zaehres, Holm ;
Schoeler, Hans Robert ;
Schwamborn, Jens Christian .
STEM CELL REPORTS, 2017, 9 (05) :1423-1431
[7]   Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope [J].
Aslan, Cynthia ;
Kiaie, Seyed Hossein ;
Zolbanin, Naime Majidi ;
Lotfinejad, Parisa ;
Ramezani, Reihaneh ;
Kashanchi, Fatah ;
Jafari, Reza .
BMC BIOTECHNOLOGY, 2021, 21 (01)
[8]   Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy [J].
Aslan, Cynthia ;
Maralbashi, Sepideh ;
Salari, Farhad ;
Kahroba, Houman ;
Sigaroodi, Faraz ;
Kazemi, Tohid ;
Kharaziha, Pedram .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) :16885-16903
[9]   In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa [J].
Bakondi, Benjamin ;
Lv, Wenjian ;
Lui, Bin ;
Jones, Melissa K. ;
Tsai, Yuchun ;
Kim, Kevin J. ;
Levy, Rachelle ;
Akhtar, Aslam Abbasi ;
Breunig, Joshua J. ;
Svendseni, Clive N. ;
Wang, Shaomei .
MOLECULAR THERAPY, 2016, 24 (03) :556-563
[10]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712