High-performance and durable membrane electrode assemblies based on CeO2 and ePTFE double-reinforcement strategy for proton exchange membrane fuel cells operating at elevated temperatures

被引:6
作者
Xing, Yijing [1 ,2 ]
Liu, Lei [1 ,2 ]
Fu, Zhiyong [1 ,2 ]
Li, Yifan [1 ,2 ]
Li, Haibin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explora, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Membrane electrode assembly; Durability; Elevated temperature; Low relative humidity; Proton exchange membrane fuel cell; COMPOSITE MEMBRANES; CERIUM OXIDE; DEGRADATION; IONOMER; DURABILITY; MITIGATION; DEPOSITION; EVOLUTION;
D O I
10.1016/j.jpowsour.2023.233727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The membrane electrode assemblies (MEAs) play a decisive role in operating conditions and lifetime of fuel cell. In this study, MEAs that could work stably at elevated temperatures were prepared. With this method, a shortside chain perfluorosulfonic acid ionomer coating with CeO2 nanoparticles and two layers of expanded polytetrafluoroethylene reinforcement, to be used as a proton exchange membrane, was directly deposited between the cathode and anode gas diffusion electrodes, forming a double-reinforced integrated MEA. The effects of CeO2 doping amount on performance and other electrochemical properties of MEAs were systematically studied. Under the coupling effect of the water-retention and non-proton-conducting properties of CeO2, the 0.5 wt% CeO2-doped MEA (MEA-S0.5) had optimal performance above 100 degrees C and under low relative humidity (RH) conditions. At 120 degrees C and 30% RH, MEA-S0.5 exhibited peak power density of 0.460 W cm-2 (H2/air operation, 100 kPa), which was about 1.28 times that of MEA without CeO2 doping (MEA-S0). Furthermore, CeO2 effectively enhanced the durability of the MEA. Compared with MEA-S0, MEA-S0.5 did not exhibit significant degradation in output power, H2 crossover, or proton conductivity in the 100-h open-circuit voltage-holding test. This work paves the way for developing high-performance, durable MEAs that are suitable for elevated temperatures.
引用
收藏
页数:10
相关论文
共 50 条
[1]   High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane [J].
Arico, A. S. ;
Di Blasi, A. ;
Brunaccini, G. ;
Sergi, F. ;
Dispenza, G. ;
Andaloro, L. ;
Ferraro, M. ;
Antonucci, V. ;
Asher, P. ;
Buche, S. ;
Fongalland, D. ;
Hards, G. A. ;
Sharman, J. D. B. ;
Bayer, A. ;
Heinz, G. ;
Zandona, N. ;
Zuber, R. ;
Gebert, M. ;
Corasaniti, M. ;
Ghielmi, A. ;
Jones, D. J. .
FUEL CELLS, 2010, 10 (06) :1013-1023
[2]   Spray deposition of Nafion membranes: Electrode-supported fuel cells [J].
Bayer, Thomas ;
Hung Cuong Pham ;
Sasaki, Kazunari ;
Lyth, Stephen Matthew .
JOURNAL OF POWER SOURCES, 2016, 327 :319-326
[3]   Water management in novel direct membrane deposition fuel cells under low humidification [J].
Breitwieser, M. ;
Moroni, R. ;
Schock, J. ;
Schulz, M. ;
Schillinger, B. ;
Pfeiffer, F. ;
Zengerle, R. ;
Thiele, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (26) :11412-11417
[4]   A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer [J].
Breitwieser, Matthias ;
Bayer, Thomas ;
Buechler, Andreas ;
Zengerle, Roland ;
Lyth, Stephen M. ;
Thiele, Simon .
JOURNAL OF POWER SOURCES, 2017, 351 :145-150
[5]   Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells [J].
Breitwieser, Matthias ;
Klose, Carolin ;
Hartmann, Armin ;
Buechler, Andreas ;
Klingele, Matthias ;
Vierrath, Severin ;
Zengerle, Roland ;
Thiele, Simon .
ADVANCED ENERGY MATERIALS, 2017, 7 (06)
[6]   A Novel Approach to Fabricate Membrane Electrode Assembly by Directly Coating the Nafion Ionomer on Catalyst Layers for Proton-Exchange Membrane Fuel Cells [J].
Cheng Yang ;
Han, Ning ;
Wang, Yajun ;
Yuan, Xiao-Zi ;
Xu, Jiaoyan ;
Huang, Henghui ;
Fan, Jiantao ;
Li, Hui ;
Wang, Haijiang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (26) :9803-9812
[7]   Highly Durable Membrane Electrode Assembly with Multiwalled Carbon Nanotubes/CeO2-Reinforced Nafion Composite Membrane by Spraying Method for Fuel Cell Applications [J].
Choi, Eunho ;
Kim, Sang Moon ;
Jang, Segeun .
ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09)
[8]   Multifunctional Nafion/CeO2 Dendritic Structures for Enhanced Durability and Performance of Polymer Electrolyte Membrane Fuel Cells [J].
Choi, Jiwoo ;
Yeon, Je Hyeon ;
Yook, Seung Ho ;
Shin, Sungsoo ;
Kim, Jin Young ;
Choi, Mansoo ;
Jang, Segeun .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) :806-815
[9]   New roads and challenges for fuel cells in heavy-duty transportation [J].
Cullen, David A. ;
Neyerlin, K. C. ;
Ahluwalia, Rajesh K. ;
Mukundan, Rangachary ;
More, Karren L. ;
Borup, Rodney L. ;
Weber, Adam Z. ;
Myers, Deborah J. ;
Kusoglu, Ahmet .
NATURE ENERGY, 2021, 6 (05) :462-474
[10]   Membrane Electrode Assembly Fabrication Process for Directly Coating Catalyzed Gas Diffusion Layers [J].
Ding, Xiaoyu ;
Didari, Sima ;
Fuller, Thomas F. ;
Harris, Tequila A. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :B746-B753