A critical role for staphylococcal nitric oxide synthase in controlling flavohemoglobin toxicity

被引:2
作者
Singh, Ryan M. [1 ]
Chaudhari, Sujata S. [1 ]
Panda, Sasmita [1 ]
Hutfless, Elizabeth H. [1 ]
Heim, Cortney E. [1 ]
Shinde, Dhananjay [1 ]
Alqarzaee, Abdulelah A. [1 ]
Sladek, Margaret [1 ]
Kumar, Vineet [1 ]
Zimmerman, Matthew C. [2 ]
Fey, Paul D. [1 ]
Kielian, Tammy [1 ]
Thomas, Vinai C. [1 ,3 ]
机构
[1] Univ Nebraska Med Ctr, Ctr Staphylococcal Res, Dept Pathol & Microbiol, Omaha, NE 68198 USA
[2] Univ Nebraska Med Ctr, Cellular & Integrat Physiol, Omaha, NE 68198 USA
[3] Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA
来源
REDOX BIOLOGY | 2023年 / 67卷
关键词
Staphylococcus epidermidis; Bacterial nitric oxide synthase; Flavohemoglobin; Superoxide; Respiration; ESCHERICHIA-COLI; FLAVOHAEMOGLOBIN HMP; CYSTEINE METABOLISM; OXIDATIVE STRESS; GENE-EXPRESSION; IN-VITRO; REGULATOR; AUREUS; CYMR; EPIDERMIDIS;
D O I
10.1016/j.redox.2023.102935
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most coagulase-negative staphylococcal species, including the opportunistic pathogen Staphylococcus epidermidis, struggle to maintain redox homeostasis and grow under nitrosative stress. Under these conditions, growth can only resume once nitric oxide (NO) is detoxified by the flavohemoglobin Hmp. Paradoxically, S. epidermidis produces endogenous NO through its genetically encoded nitric oxide synthase (seNOS) and heavily relies on its activity for growth. In this study, we investigate the basis of the growth advantage attributed to seNOS activity. Our findings reveal that seNOS supports growth by countering Hmp toxicity. S. epidermidis relies on Hmp activity for its survival in the host under NO stress. However, in the absence of nitrosative stress, Hmp generates sig-nificant amounts of the harmful superoxide radical (O-2(center dot-)) from its heme prosthetic group which impedes growth. To limit Hmp toxicity, nitrite (NO2-) derived from seNOS promotes CymR-CysK regulatory complex activity, which typically regulates cysteine metabolism, but we now demonstrate to also repress hmp transcription. These findings reveal a critical mechanism through which the bacterial NOS-Hmp axis drives staphylococcal fitness.
引用
收藏
页数:13
相关论文
共 41 条
[1]   STREPTOMYCIN ACCUMULATION BY BACILLUS-SUBTILIS REQUIRES BOTH A MEMBRANE-POTENTIAL AND CYTOCHROME AA3 [J].
ARROW, AS ;
TABER, HW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1986, 29 (01) :141-146
[2]   Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp [J].
Bang, Iel-Soo ;
Liu, Limin ;
Vazquez-Torres, Andres ;
Crouch, Marie-Laure ;
Stamler, Jonathan S. ;
Fang, Ferric C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (38) :28039-28047
[3]   The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator [J].
Bodenmiller, DM ;
Spiro, S .
JOURNAL OF BACTERIOLOGY, 2006, 188 (03) :874-881
[4]   Nitric oxide and its implications in skin homeostasis and disease - a review [J].
Bruch-Gerharz, D ;
Ruzicka, T ;
Kolb-Bachofen, V .
ARCHIVES OF DERMATOLOGICAL RESEARCH, 1998, 290 (12) :643-651
[5]   Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae) [J].
Carfagna, Simona ;
Bottone, Claudia ;
Cataletto, Pia Rosa ;
Petriccione, Milena ;
Pinto, Gabriele ;
Salbitani, Giovanna ;
Vona, Vincenza ;
Pollio, Antonino ;
Ciniglia, Claudia .
PLANT AND CELL PHYSIOLOGY, 2016, 57 (09) :1890-1898
[6]   Nitrite Derived from Endogenous Bacterial Nitric Oxide Synthase Activity Promotes Aerobic Respiration [J].
Chaudhari, Sujata S. ;
Kim, Minji ;
Lei, Shulei ;
Razvi, Fareha ;
Alqarzaee, Abdulelah A. ;
Hutfless, Elizabeth H. ;
Powers, Robert ;
Zimmerman, Matthew C. ;
Fey, Paul D. ;
Thomas, Vinai C. .
MBIO, 2017, 8 (04)
[7]   The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus [J].
Chaudhari, Sujata S. ;
Thomas, Vinai C. ;
Sadykov, Marat R. ;
Bose, Jeffrey L. ;
Ahn, Daniel J. ;
Zimmerman, Matthew C. ;
Bayles, Kenneth W. .
MOLECULAR MICROBIOLOGY, 2016, 101 (06) :942-953
[8]  
Fang F.C., 1999, NITRIC OXIDE INFECT
[9]   Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies [J].
Fang, FC .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (10) :820-832
[10]   Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology [J].
Forrester, Michael T. ;
Eyler, Christine E. ;
Rich, Jeremy N. .
BIOTECHNIQUES, 2011, 50 (01) :41-45