Added prognostic value of 3D deep learning-derived features from preoperative MRI for adult-type diffuse gliomas

被引:7
作者
Lee, Jung Oh [2 ,3 ]
Ahn, Sung Soo [4 ]
Choi, Kyu Sung [1 ,2 ,3 ]
Lee, Junhyeok [5 ]
Jang, Joon [6 ]
Park, Jung Hyun [7 ]
Hwang, Inpyeong [2 ,3 ]
Park, Chul-Kee [8 ]
Park, Sung Hye [9 ]
Chung, Jin Wook [2 ,3 ,10 ]
Choi, Seung Hong [2 ,3 ,11 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, 101, Daehak Ro, Seoul 110744, South Korea
[2] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Dept Radiol, Artificial Intelligence Collaborat Network, Seoul, South Korea
[4] Yonsei Univ, Coll Med, Dept Radiol, Seoul, South Korea
[5] Seoul Natl Univ, Grad Sch, Interdisciplinary Programs Canc Biol Major, Seoul, South Korea
[6] Seoul Natl Univ, Dept Biomed Sci, Seoul, South Korea
[7] Seoul Natl Univ, Boramae Med Ctr, Dept Radiol, Seoul Metropolitan Govt, Seoul, South Korea
[8] Seoul Natl Univ Hosp, Dept Neurosurg, Seoul, South Korea
[9] Seoul Natl Univ Hosp, Dept Pathol, Seoul, South Korea
[10] Seoul Natl Univ Hosp, Inst Innovate Biomed Technol, Seoul, South Korea
[11] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul, South Korea
关键词
Deep learning; Glioblastoma; Isocitrate dehydrogenase; Magnetic resonance imaging; Survival analysis; MGMT PROMOTER METHYLATION; GLIOBLASTOMA; SURVIVAL; PREDICTION; MUTATIONS;
D O I
10.1093/neuonc/noad202
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. To investigate the prognostic value of spatial features from whole-brain MRI using a three-dimensional (3D) convolutional neural network for adult-type diffuse gliomas.Methods. In a retrospective, multicenter study, 1925 diffuse glioma patients were enrolled from 5 datasets: SNUH (n = 708), UPenn (n = 425), UCSF (n = 500), TCGA (n = 160), and Severance (n = 132). The SNUH and Severance datasets served as external test sets. Precontrast and postcontrast 3D T1-weighted, T2-weighted, and T2-FLAIR images were processed as multichannel 3D images. A 3D-adapted SE-ResNeXt model was trained to predict overall survival. The prognostic value of the deep learning-based prognostic index (DPI), a spatial feature-derived quantitative score, and established prognostic markers were evaluated using Cox regression. Model evaluation was performed using the concordance index (C-index) and Brier score.Results: The MRI-only median DPI survival prediction model achieved C-indices of 0.709 and 0.677 (BS = 0.142 and 0.215) and survival differences (P < 0.001 and P = 0.002; log-rank test) for the SNUH and Severance datasets, respectively. Multivariate Cox analysis revealed DPI as a significant prognostic factor, independent of clinical and molecular genetic variables: hazard ratio = 0.032 and 0.036 (P < 0.001 and P = 0.004) for the SNUH and Severance datasets, respectively. Multimodal prediction models achieved higher C-indices than models using only clinical and molecular genetic variables: 0.783 vs. 0.774, P = 0.001, SNUH; 0.766 vs. 0.748, P = 0.023, Severance.Conclusions: The global morphologic feature derived from 3D CNN models using whole-brain MRI has independent prognostic value for diffuse gliomas. Combining clinical, molecular genetic, and imaging data yields the best performance.
引用
收藏
页码:571 / 580
页数:10
相关论文
共 43 条
[1]  
Arpit D, 2017, PR MACH LEARN RES, V70
[2]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[3]   The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics [J].
Bakas, Spyridon ;
Sako, Chiharu ;
Akbari, Hamed ;
Bilello, Michel ;
Sotiras, Aristeidis ;
Shukla, Gaurav ;
Rudie, Jeffrey D. ;
Santamaria, Natali Flores ;
Kazerooni, Anahita Fathi ;
Pati, Sarthak ;
Rathore, Saima ;
Mamourian, Elizabeth ;
Ha, Sung Min ;
Parker, William ;
Doshi, Jimit ;
Baid, Ujjwal ;
Bergman, Mark ;
Binder, Zev A. ;
Verma, Ragini ;
Lustig, Robert A. ;
Desai, Arati S. ;
Bagley, Stephen J. ;
Mourelatos, Zissimos ;
Morrissette, Jennifer ;
Watt, Christopher D. ;
Brem, Steven ;
Wolf, Ronald L. ;
Melhem, Elias R. ;
Nasrallah, MacLean P. ;
Mohan, Suyash ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2022, 9 (01)
[4]   Age-stratified clinical performance and survival of patients with IDH-wildtype glioblastoma homogeneously treated by radiotherapy with concomitant and maintenance temozolomide [J].
Berger, Kerstin ;
Turowski, Bernd ;
Felsberg, Joerg ;
Malzkorn, Bastian ;
Reifenberger, Guido ;
Steiger, Hans-Jakob ;
Budach, Wilfried ;
Haussmann, Jan ;
Knipps, Johannes ;
Rapp, Marion ;
Haenggi, Daniel ;
Sabel, Michael ;
Mijderwijk, Hendrik-Jan ;
Kamp, Marcel A. .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (01) :253-262
[5]   The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials [J].
Binabaj, Maryam Moradi ;
Bahrami, Afsane ;
ShahidSales, Soodabeh ;
Joodi, Marjan ;
Mashhad, Mona Joudi ;
Hassanian, Seyed Mahdi ;
Anvari, Kazem ;
Avan, Amir .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (01) :378-386
[6]   The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset [J].
Calabrese, Evan ;
-Meyer, Javier E. Villanueva ;
Rudie, Jeffrey D. ;
Rauschecker, Andreas M. ;
Baid, Ujjwal ;
Bakas, Spyridon ;
Cha, Soonmee ;
Mongan, John T. ;
Hess, Christopher P. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (06)
[7]   Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors [J].
Eckel-Passow, Jeanette E. ;
Lachance, Daniel H. ;
Molinaro, Annette M. ;
Walsh, Kyle M. ;
Decker, Paul A. ;
Sicotte, Hugues ;
Pekmezci, Melike ;
Rice, Terri ;
Kosel, Matt L. ;
Smirnov, Ivan V. ;
Sarkar, Gobinda ;
Caron, Alissa A. ;
Kollmeyer, Thomas M. ;
Praska, Corinne E. ;
Chada, Anisha R. ;
Halder, Chandralekha ;
Hansen, Helen M. ;
Mccoy, Lucie S. ;
Bracci, Paige M. ;
Marshall, Roxanne ;
Zheng, Shichun ;
Reis, Gerald F. ;
Pico, Alexander R. ;
O'Neill, Brian P. ;
Buckner, Jan C. ;
Giannini, Caterina ;
Huse, Jason T. ;
Perry, Arie ;
Tihan, Tarik ;
Berger, Mitchell S. ;
Chang, Susan M. ;
Prados, Michael D. ;
Wiemels, Joseph ;
Wiencke, John K. ;
Wrensch, Margaret R. ;
Jenkins, Robert B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2499-2508
[8]  
Foret P., 2020, ARXIVORG
[9]   A scalable discrete-time survival model for neural networks [J].
Gensheimer, Michael F. ;
Narasimhan, Balasubramanian .
PEERJ, 2019, 7
[10]  
Gittleman H., 2016, NEURO-ONCOLOGY, V19, pnow208